CS2010: ALGORITHMS AND DATA STRUCTURES

Lecture 13: Binary Search Trees

Vasileios Koutavas

School of Computer Science and Statistics
Trinity College Dublin
3.2 Binary Search Trees

- BSTs
- ordered operations
- deletion
3.2 Binary Search Trees

- BSTs
- ordered operations
- deletion
Binary search trees

Definition. A BST is a binary tree in symmetric order.

A binary tree is either:
- Empty.
- Two disjoint binary trees (left and right).

Symmetric order. Each node has a key, and every node’s key is:
- Larger than all keys in its left subtree.
- Smaller than all keys in its right subtree.
- **leaves** of tree: the nodes with no child nodes
- **height** of tree: the maximum number of **links** from the root to a leaf
- **levels** of tree: the maximum number of **nodes** from the root to a leaf (incl. root and leaf)
- **size** of tree: the number of nodes in the tree
- **depth** of a node: the number of **links** from the root to this node.
→ **leaves** of tree: the nodes with no child nodes
→ **height** of tree: the maximum number of **links** from the root to a leaf
→ **levels** of tree: the maximum number of **nodes** from the root to a leaf (incl. root and leaf)
→ **size** of tree: the number of nodes in the tree
→ **depth** of a node: the number of **links** from the root to this node.

Q: how many leaves in this tree?
Q: what is the height of this tree?
Q: how many levels in this tree?
Q: what is the size of this tree?
Q: what is the depth of ‘H’?
→ **leaves** of tree: the nodes with no child nodes
→ **height** of tree: the maximum number of **links** from the root to a leaf
→ **levels** of tree: the maximum number of **nodes** from the root to a leaf (incl. root and leaf)
→ **size** of tree: the number of nodes in the tree
→ **depth** of a node: the number of **links** from the root to this node.

Q: how many leafs in this tree? 4
Q: what is the height of this tree? 4
Q: how many levels in this tree? 5
Q: what is the size of this tree? 9
Q: what is the depth of ‘H’? 3
Binary search tree demo

Search. If less, go left; if greater, go right; if equal, search hit.

succesful search for H
Insert. If less, go left; if greater, go right; if null, insert.

insert G
BST representation in Java

Java definition. A BST is a reference to a root Node.

A Node is composed of four fields:

- A Key and a Value.
- A reference to the left and right subtree.

```
private class Node
{
    private Key key;
    private Value val;
    private Node left, right;
    public Node(Key key, Value val)
    {
        this.key = key;
        this.val = val;
    }
}
```

Key and Value are generic types; Key is Comparable.
public class BST<Key extends Comparable<Key>, Value> {

 private Node root;

 private class Node
 {
 /* see previous slide */
 }

 public void put(Key key, Value val)
 {
 /* see next slides */
 }

 public Value get(Key key)
 {
 /* see next slides */
 }

 public void delete(Key key)
 {
 /* see next slides */
 }

 public Iterable<Key> iterator()
 {
 /* see next slides */
 }
}

root of BST
BST search: Java implementation

Get. Return value corresponding to given key, or null if no such key.

```java
public Value get(Key key) {
    Node x = root;
    while (x != null) {
        int cmp = key.compareTo(x.key);
        if (cmp < 0) x = x.left;
        else if (cmp > 0) x = x.right;
        else if (cmp == 0) return x.val;
    }
    return null;
}
```

Cost. Number of compares is equal to 1 + depth of node.
BST insert

Put. Associate value with key.

Search for key, then two cases:
- Key in tree ⇨ reset value.
- Key not in tree ⇨ add new node.

Insertion into a BST

- Inserting L
- Search for L ends at this null link
- Create new node
- Reset links on the way up

Insertion into a BST
BST insert: Java implementation

Put. Associate value with key.

```java
public void put(Key key, Value val)
{
    root = put(root, key, val);
}

private Node put(Node x, Key key, Value val)
{
    if (x == null) return new Node(key, val);
    int cmp = key.compareTo(x.key);
    if (cmp < 0)
        x.left = put(x.left, key, val);
    else if (cmp > 0)
        x.right = put(x.right, key, val);
    else if (cmp == 0)
        x.val = val;
    return x;
}
```

conce, but tricky, recursive code; read carefully!

Cost. Number of compares is equal to 1 + depth of node.
Tree shape

- Many BSTs correspond to same set of keys.
- Number of compares for search/insert is equal to 1 + depth of node.

Bottom line. Tree shape depends on order of insertion.
BST insertion: random order visualization

Ex. Insert keys in random order.

```
N = 255
max = 16
avg = 9.1
opt = 7.0
```
BSTs: mathematical analysis

Proposition. If \(N \) distinct keys are inserted into a BST in **random** order, the expected number of compares for a search/insert is \(\sim 2 \ln N \).

Pf. 1–1 correspondence with quicksort partitioning.

Proposition. [Reed, 2003] If \(N \) distinct keys are inserted in random order, expected height of tree is \(\sim 4.311 \ln N \).

How Tall is a Tree?

Bruce Reed
CNRS, Paris, France
reed@moka.ccr.jussieu.fr

ABSTRACT

Let \(H_n \) be the height of a random binary search tree on \(n \) nodes. We show that there exist constants \(\alpha = 4.31107 \ldots \) and \(\beta = 1.95 \ldots \) such that \(\mathbb{E}(H_n) = \alpha \log n - \beta \log \log n + O(1) \), we also show that \(\text{Var}(H_n) = O(1) \).

But... Worst-case height is \(N \).

[exponentially small chance when keys are inserted in random order]
ST implementations: summary

<table>
<thead>
<tr>
<th>Implementation</th>
<th>Guarantee</th>
<th>Average Case</th>
<th>Operations on Keys</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>search</td>
<td>insert</td>
<td>search hit</td>
</tr>
<tr>
<td>sequential search (unordered list)</td>
<td>N</td>
<td>N</td>
<td>$\frac{1}{2} N$</td>
</tr>
<tr>
<td>binary search (ordered array)</td>
<td>$\lg N$</td>
<td>N</td>
<td>$\lg N$</td>
</tr>
<tr>
<td>BST</td>
<td>N</td>
<td>N</td>
<td>$1.39 \lg N$</td>
</tr>
</tbody>
</table>

Why not shuffle to ensure a (probabilistic) guarantee of $4.311 \ln N$?
Q: Which of the following are Binary Search Trees? Why?