2.4 PRIORITY QUEUES

- API and elementary implementations
- binary heaps
- heapsort
- event-driven simulation
2.4 PRIORITY QUEUES

- API and elementary implementations
- binary heaps
- heapsort
- event-driven simulation
Last Lecture
Priority queue

Collections. Insert and delete items. Which item to delete?

Stack. Remove the item most recently added.
Queue. Remove the item least recently added.
Randomized queue. Remove a random item.

Priority queue. Remove the largest (or smallest) item.

<table>
<thead>
<tr>
<th>operation</th>
<th>argument</th>
<th>return value</th>
</tr>
</thead>
<tbody>
<tr>
<td>insert</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>insert</td>
<td>Q</td>
<td></td>
</tr>
<tr>
<td>insert</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>remove max</td>
<td>E</td>
<td>Q</td>
</tr>
<tr>
<td>insert</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>insert</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>insert</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>remove max</td>
<td>M</td>
<td>X</td>
</tr>
<tr>
<td>insert</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>insert</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>insert</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>remove max</td>
<td>P</td>
<td></td>
</tr>
</tbody>
</table>
Priority queue API

Requirement.
Generic items are Comparable.

```java
public class MaxPQ<Key extends Comparable<Key>>
```

- **MaxPQ()**: create an empty priority queue
- **MaxPQ(Key[] a)**: create a priority queue with given keys
- **void insert(Key v)**: insert a key into the priority queue
- **Key delMax()**: return and remove the largest key
- **boolean isEmpty()**: is the priority queue empty?
- **Key max()**: return the largest key
- **int size()**: number of entries in the priority queue

Key must be Comparable (bounded type parameter)
Priority queue client example

Challenge. Find the largest M items in a stream of N items.
- Fraud detection: isolate $$ transactions.
- NSA monitoring: flag most suspicious documents.

Constraint. Not enough memory to store N items.

```
% more tinyBatch.txt
Turing  6/17/1990  644.08
vonNeumann 3/26/2002  4121.85
Dijkstra  8/22/2007  2678.40
vonNeumann 1/11/1999  4409.74
Dijkstra  11/18/1995  837.42
Hoare  5/10/1993  3229.27
vonNeumann 2/12/1994  4732.35
Hoare  8/18/1992  4381.21
Turing  1/11/2002  66.10
Thompson  2/27/2000  4747.08
Turing  2/11/1991  2156.86
Hoare  8/12/2003  1025.70
vonNeumann 10/13/1993  2520.97
Dijkstra  9/10/2000  708.95
Turing  10/12/1993  3532.36
Hoare  2/10/2005  4050.20
```

```
% java TopM 5 < tinyBatch.txt
Thompson  2/27/2000  4747.08
vonNeumann 2/12/1994  4732.35
vonNeumann 1/11/1999  4409.74
Hoare  8/18/1992  4381.21
vonNeumann 3/26/2002  4121.85
```

N huge, M large

sort key
Priority queue client example

Challenge. Find the largest M items in a stream of N items.
- Fraud detection: isolate $$ transactions.
- NSA monitoring: flag most suspicious documents.

Constraint. Not enough memory to store N items.

```java
MinPQ<Transaction> pq = new MinPQ<Transaction>();
while (StdIn.hasNextLine())
{
    String line = StdIn.readLine();
    Transaction item = new Transaction(line);
    pq.insert(item);
    if (pq.size() > M)
        pq.delMin();
}
```

Transaction data type is Comparable (ordered by $$)

pq contains largest M items

use a min-oriented pq

N huge, M large
Priority queue client example

Challenge. Find the largest M items in a stream of N items.

<table>
<thead>
<tr>
<th>implementation</th>
<th>time</th>
<th>space</th>
</tr>
</thead>
<tbody>
<tr>
<td>sort</td>
<td>$N \log N$</td>
<td>N</td>
</tr>
<tr>
<td>elementary PQ</td>
<td>$M \log N$</td>
<td>M</td>
</tr>
<tr>
<td>binary heap</td>
<td>$N \log M$</td>
<td>M</td>
</tr>
<tr>
<td>best in theory</td>
<td>N</td>
<td>M</td>
</tr>
</tbody>
</table>

order of growth of finding the largest M in a stream of N items
Priority queue: unordered and ordered array implementation

<table>
<thead>
<tr>
<th>operation</th>
<th>argument</th>
<th>return value</th>
<th>size</th>
<th>contents (unordered)</th>
<th>contents (ordered)</th>
</tr>
</thead>
<tbody>
<tr>
<td>insert</td>
<td>P</td>
<td>1</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>insert</td>
<td>Q</td>
<td>2</td>
<td>P Q</td>
<td>P Q</td>
<td>P Q</td>
</tr>
<tr>
<td>insert</td>
<td>E</td>
<td>3</td>
<td>P Q E</td>
<td>E P Q</td>
<td>E P Q</td>
</tr>
<tr>
<td>remove max</td>
<td>Q</td>
<td>2</td>
<td>P E</td>
<td>E P</td>
<td>E P</td>
</tr>
<tr>
<td>insert</td>
<td>X</td>
<td>3</td>
<td>P E X</td>
<td>E P X</td>
<td>E P X</td>
</tr>
<tr>
<td>insert</td>
<td>A</td>
<td>4</td>
<td>P E X</td>
<td>A E P X</td>
<td>A E P X</td>
</tr>
<tr>
<td>insert</td>
<td>M</td>
<td>5</td>
<td>P E X</td>
<td>A E M P X</td>
<td>A E M P X</td>
</tr>
<tr>
<td>remove max</td>
<td>X</td>
<td>4</td>
<td>P E M</td>
<td>A E M P</td>
<td>A E M P</td>
</tr>
<tr>
<td>insert</td>
<td>P</td>
<td>5</td>
<td>P E M</td>
<td>A E M P</td>
<td>A E M P</td>
</tr>
<tr>
<td>insert</td>
<td>L</td>
<td>6</td>
<td>P E M</td>
<td>A E L M P</td>
<td>A E L M P</td>
</tr>
<tr>
<td>insert</td>
<td>E</td>
<td>7</td>
<td>P E M</td>
<td>A E E L M P P</td>
<td>A E E L M P P</td>
</tr>
<tr>
<td>remove max</td>
<td>P</td>
<td>6</td>
<td>E M A P L E</td>
<td>A E E L M P P</td>
<td></td>
</tr>
</tbody>
</table>

A sequence of operations on a priority queue
Challenge. Implement all operations efficiently.

<table>
<thead>
<tr>
<th>implementation</th>
<th>insert</th>
<th>del max</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>unordered array</td>
<td>1</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>ordered array</td>
<td>N</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>goal</td>
<td>$\log N$</td>
<td>$\log N$</td>
<td>$\log N$</td>
</tr>
</tbody>
</table>

order of growth of running time for priority queue with N items
2.4 PRIORITY QUEUES

- API and elementary implementations
- binary heaps
- heapsort
- event-driven simulation
Complete binary tree

Binary tree. Empty or node with links to left and right binary trees.

Complete tree. Perfectly balanced, except for bottom level.

![Complete binary tree](image)

Property. Height of complete tree with \(N \) nodes is \(\lceil \lg N \rceil \).

Pf. Height increases only when \(N \) is a power of 2.
A complete binary tree in nature

Hyphaene Compressa - Doum Palm

© Shlomit Pinter
Binary heap representations

Binary heap. Array representation of a heap-ordered complete binary tree.

Heap-ordered binary tree.
- Keys in nodes.
- Parent's key no smaller than children's keys.

Array representation.
- Indices start at 1.
- Take nodes in level order.
- No explicit links needed!
Binary heap properties

Proposition. Largest key is $a[1]$, which is root of binary tree.

Proposition. Can use array indices to move through tree.

- Parent of node at k is at $k/2$.
- Children of node at k are at $2k$ and $2k+1$.

- left subtree of k is empty if $2k>N$.
- right subtree of k is empty if $(2k+1)>N$.
- k is a leaf node if $2k>N$.

![Heap representations](image-url)
Today
→ Implementation of binary heaps
→ Practical improvements of binary heaps
→ Heapsort
Binary heap demo

Insert. Add node at end, then swim it up.

Remove the maximum. Exchange root with node at end, then sink it down.

heap ordered
Binary heap demo

Insert. Add node at end, then swim it up.

Remove the maximum. Exchange root with node at end, then sink it down.

heap ordered

```
S R O N P G A E I H
```
Promotion in a heap

Scenario. Child's key becomes larger key than its parent's key.

To eliminate the violation:
- Exchange key in child with key in parent.
- Repeat until heap order restored.

```java
private void swim(int k) {
    while (k > 1 && less(k/2, k)) {
        exch(k, k/2);
        k = k/2;
    }
}
```

Peter principle. Node promoted to level of incompetence.
Insertion in a heap

Insert. Add node at end, then swim it up.

Cost. At most $1 + \log N$ compares.

```java
public void insert(Key x) {
    pq[++N] = x;
    swim(N);
}
```
Demotion in a heap

Scenario. Parent's key becomes smaller than one (or both) of its children's.

To eliminate the violation:

- Exchange key in parent with key in larger child.
- Repeat until heap order restored.

```java
private void sink(int k) {
    while (2*k <= N) {
        int j = 2*k;
        if (j < N && less(j, j+1)) j++;
        if (!less(k, j)) break;
        exch(k, j);
        k = j;
    }
}
```

Power struggle. Better subordinate promoted.
Delete the maximum in a heap

Delete max. Exchange root with node at end, then sink it down.
Cost. At most $2 \lg N$ compares.

```java
public Key deleteMax()
{
    Key max = pq[1];
    exch(1, N--);
    sink(1);
    pq[N+1] = null;
    return max;
}
```
Binary heap: Java implementation

```java
public class MaxPQ<Key extends Comparable<Key>> {
    private Key[] pq;
    private int N;

    public MaxPQ(int capacity)
    { pq = (Key[]) new Comparable[capacity+1]; } }

public boolean isEmpty()
{ return N == 0; }
public void insert(Key key)
private void delMax()
{ /* see previous code */ }

private void swim(int k)
private void sink(int k)
{ /* see previous code */ }

private boolean less(int i, int j)
{ return pq[i].compareTo(pq[j]) < 0; }
private void exch(int i, int j)
{ Key t = pq[i]; pq[i] = pq[j]; pq[j] = t; }
}
```
Priority queues implementation cost summary

<table>
<thead>
<tr>
<th>Implementation</th>
<th>Insert</th>
<th>Del Max</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>unordered array</td>
<td>1</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>ordered array</td>
<td>N</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>binary heap</td>
<td>$\log N$</td>
<td>$\log N$</td>
<td>1</td>
</tr>
</tbody>
</table>

Order-of-growth of running time for priority queue with N items
Binary heap: practical improvements

Half-exchanges in sink and swim.
- Reduces number of array accesses.
- Worth doing.
Floyd's sink-to-bottom trick.

- Sink key at root all the way to bottom.
 \[1 \text{ compare per node}\]
- Swim key back up.
 \[\text{some extra compares and exchanges}\]
- Fewer compares; more exchanges.
- Worthwhile depending on cost of compare and exchange.
Multiway heaps.

- Complete d-way tree.
- Parent's key no smaller than its children's keys.
- Swim takes $\log_d N$ compares; sink takes $d \log_d N$ compares.
- Sweet spot: $d = 4$.
Binary heap: practical improvements

Caching. Binary heap is not cache friendly.
Binary heap: practical improvements

Caching. Binary heap is not cache friendly.

- Cache-aligned *d*-heap.
- Funnel heap.
- B-heap.
- ...

Figure 5: The layout of a *d*-heap when four elements fit per cache line and the array is padded to cache-align the heap.

Figure 6: A graph illustrating the collective analysis of cache-aligned *d*-heaps.
Priority queues implementation cost summary

<table>
<thead>
<tr>
<th>implementation</th>
<th>insert</th>
<th>del max</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>unordered array</td>
<td>1</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>ordered array</td>
<td>N</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>binary heap</td>
<td>$\log N$</td>
<td>$\log N$</td>
<td>1</td>
</tr>
<tr>
<td>d-ary heap</td>
<td>$\log_d N$</td>
<td>$d \log_d N$</td>
<td>1</td>
</tr>
<tr>
<td>Fibonacci</td>
<td>1</td>
<td>$\log N$</td>
<td>1</td>
</tr>
<tr>
<td>Brodal queue</td>
<td>1</td>
<td>$\log N$</td>
<td>1</td>
</tr>
<tr>
<td>impossible</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

† Lamortized

Why impossible?

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Order-of-growth of running time for priority queue with N items

† amortized
Binary heap considerations

Underflow and overflow.
- Underflow: throw exception if deleting from empty PQ.
- Overflow: add no-arg constructor and use resizing array.

Minimum-oriented priority queue.
- Replace \texttt{less()} with \texttt{greater()}.
- Implement \texttt{greater()}.

Other operations.
- Remove an arbitrary item.
- Change the priority of an item.

Immutability of keys.
- Assumption: client does not change keys while they're on the PQ.
- Best practice: use immutable keys.

leads to log N amortized time per op (how to make worst case?)

can implement efficiently with \texttt{sink()} and \texttt{swim()} [stay tuned for Prim/Dijkstra]
Immutability: implementing in Java

Data type. Set of values and operations on those values.
Immutable data type. Can't change the data type value once created.

```java
public final class Vector {
    private final int N;
    private final double[] data;

    public Vector(double[] data) {
        this.N = data.length;
        this.data = new double[N];
        for (int i = 0; i < N; i++)
            this.data[i] = data[i];
    }
}
```

Immutable. String, Integer, Double, Color, Vector, Transaction, Point2D.
Mutable. StringBuilder, Stack, Counter, Java array.
Immutability: properties

Data type. Set of values and operations on those values.
Immutable data type. Can't change the data type value once created.

Advantages.

- Simplifies debugging.
- Safer in presence of hostile code.
- Simplifies concurrent programming.
- Safe to use as key in priority queue or symbol table.

Disadvantage. Must create new object for each data type value.

“Classes should be immutable unless there's a very good reason to make them mutable.... If a class cannot be made immutable, you should still limit its mutability as much as possible.”
— Joshua Bloch (Java architect)
2.4 PRIORITY QUEUES

- API and elementary implementations
- binary heaps
- heapsort
- event-driven simulation
Sorting with a binary heap

Q. What is this sorting algorithm?

```java
public void sort(String[] a)
{
    int N = a.length;
    MaxPQ<String> pq = new MaxPQ<String>();
    for (int i = 0; i < N; i++)
        pq.insert(a[i]);
    for (int i = N-1; i >= 0; i--)
        a[i] = pq.delMax();
}
```

Q. What are its properties?
A. $N \log N$, extra array of length N, not stable.

Heapsort intuition. A heap is an array; do sort in place.
Heapsort

Basic plan for in-place sort.

- View input array as a complete binary tree.
- Heap construction: build a max-heap with all N keys.
- Sortdown: repeatedly remove the maximum key.
Heapsort demo

Heap construction. Build max heap using bottom-up method.

we assume array entries are indexed 1 to N

array in arbitrary order

```
S
  / 
O   R
 / \
T   X
 / \
M   P
 / \
E   L
 / \
E   E
```

```
S O R T E X A M P L E
 1 2 3 4 5 6 7 8 9 10 11
```
Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.

array in sorted order

```plaintext
A
E
E
L
M
O
P
R
S
T
X
```

1 2 3 4 5 6 7 8 9 10 11
Heapsort: heap construction

First pass. Build heap using bottom-up method.

for (int k = N/2; k >= 1; k--)
sink(a, k, N);

starting point (arbitrary order)
sink(5, 11)
sink(4, 11)
sink(2, 11)
sink(1, 11)

result (heap-ordered)
result (sorted)
Heapsort: sortdown

Second pass.
- Remove the maximum, one at a time.
- Leave in array, instead of nulling out.

```c
while (N > 1) {
    exch(a, 1, N--);
    sink(a, 1, N);
}
```
Heapsort: Java implementation

```java
public class Heap {
    public static void sort(Comparable[] a) {
        int N = a.length;
        for (int k = N/2; k >= 1; k--)
            sink(a, k, N);
        while (N > 1) {
            exch(a, 1, N);
            sink(a, 1, --N);
        }
    }

    private static void sink(Comparable[] a, int k, int N) {
        /* as before */
    }

    private static boolean less(Comparable[] a, int i, int j) {
        /* as before */
    }

    private static void exch(Object[] a, int i, int j) {
        /* as before */
    }
}
```

but convert from 1-based indexing to 0-base indexing

but make static (and pass arguments)

```java
private static void sink(Comparable[] a, int k, int N) {
    /* as before */
}

private static boolean less(Comparable[] a, int i, int j) {
    /* as before */
}

private static void exch(Object[] a, int i, int j) {
    /* as before */
}
```
Heapsort: trace

<table>
<thead>
<tr>
<th>N</th>
<th>k</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>initial values</td>
<td></td>
<td>S O R T E X A M P L E</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>5</td>
<td>S O R T L X A M P E E</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>4</td>
<td>S O R T L X A M P E E</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>S O X T L R A M P E E</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>S T X P L R A M O E E</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>X T S P L R A M O E E</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>heap-ordered</td>
<td></td>
<td>X T S P L R A M O E E</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>T P S O L R A M E E X</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>S P R O L E A M E T X</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>R P E O L E A M S T X</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>P O E M L E A R S T X</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>O M E A L E P R S T X</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>M L E A E O P R S T X</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>L E E A M O P R S T X</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>E A E L M O P R S T X</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>E A E L M O P R S T X</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>A E E L M O P R S T X</td>
<td></td>
</tr>
</tbody>
</table>

Heapsort trace (array contents just after each sink)
Heapsort: mathematical analysis

Proposition. Heap construction uses $\leq 2N$ compares and $\leq N$ exchanges.

Pf sketch. [assume $N = 2^{h+1} - 1$]

\[
h + 2(h - 1) + 4(h - 2) + 8(h - 3) + \ldots + 2^h(0) \leq 2^{h+1} = N
\]
Heapsort: mathematical analysis

Proposition. Heap construction uses \(\leq 2N \) compares and \(\leq N \) exchanges.

Proposition. Heapsort uses \(\leq 2N \lg N \) compares and exchanges.

Algorithm can be improved to \(\sim N \lg N \)

Significance. In-place sorting algorithm with \(N \log N \) worst-case.

- Mergesort: no, linear extra space. in-place merge possible, not practical
- Quicksort: no, quadratic time in worst case. N log N worst-case quicksort possible, not practical
- Heapsort: yes!

Bottom line. Heapsort is optimal for both time and space, but:

- Inner loop longer than quicksort’s.
- Makes poor use of cache.
- Not stable.

advanced tricks for improving
Introsort

Goal. As fast as quicksort in practice; $N \log N$ worst case, in place.

Introsort.

- Run quicksort.
- Cutoff to heapsort if stack depth exceeds $2 \lg N$.
- Cutoff to insertion sort for $N = 16$.

Introsort and Selection Algorithms

David R. Musser
Computer Science Department
Rensselaer Polytechnic Institute, Troy, NY 12180
musser@cs.rpi.edu

Abstract

Quicksort is the preferred in-place sorting algorithm in many contexts, since its average-case time complexity is $O(N \log N)$ and is in fact faster than most other sorting algorithms on most inputs. Its drawback is that its worst-case time bound is $O(N^2)$. Previous attempts to protect against the worst case by improving the way quicksort chooses pivot elements for partitioning have increased the average computing time too much—one might as well use heapsort, which has a $O(N \log N)$ worst-case time bound—yet has on average 2 to 5 times slower than quicksort. A similar dilemma exists with selection algorithms (for finding the k-th largest element) based on partitioning. This paper describes a simple solution to this dilemma, limit the depth of partitioning, and the subproblems that cause the limit yields a sorting algorithm with a better worst-case bound. Using heapsort as the “cutoff” yields a sorting algorithm that is just as fast as quicksort in the average case but also has an $O(N \log N)$ worst-case bound. For selection, a hybrid of Heaps’s $O(N \log N)$ algorithm, which is linear on average but quadratic in the worst case, and the Blum, Floyd, Robert, and Tarjan’s algorithm is as fast as Heaps’s algorithm in practice, yet has a linear worst-case time bound. Also discussed are issues of implementing the new algorithms as generic algorithms and accurately measuring their performance in the presence of the C++ Standard Template Library.
Sorting algorithms: summary

<table>
<thead>
<tr>
<th>inplace?</th>
<th>stable?</th>
<th>best</th>
<th>average</th>
<th>worst</th>
<th>remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>selection</td>
<td>✔️</td>
<td>$\frac{1}{2} N^2$</td>
<td>$\frac{1}{2} N^2$</td>
<td>$\frac{1}{2} N^2$</td>
<td>N exchanges</td>
</tr>
<tr>
<td>insertion</td>
<td>✔️ ✔️</td>
<td>N</td>
<td>$\frac{1}{4} N^2$</td>
<td>$\frac{1}{2} N^2$</td>
<td>use for small N or partially ordered</td>
</tr>
<tr>
<td>shell</td>
<td>✔️</td>
<td>$N \log_3 N$</td>
<td>?</td>
<td>$c N^{3/2}$</td>
<td>tight code; subquadratic</td>
</tr>
<tr>
<td>merge</td>
<td>✔️</td>
<td>$\frac{1}{2} N \lg N$</td>
<td>$N \lg N$</td>
<td>$N \lg N$</td>
<td>$N \log N$ guarantee; stable</td>
</tr>
<tr>
<td>timsort</td>
<td>✔️</td>
<td>N</td>
<td>$N \lg N$</td>
<td>$N \lg N$</td>
<td>improves mergesort when preexisting order</td>
</tr>
<tr>
<td>quick</td>
<td>✔️</td>
<td>$N \lg N$</td>
<td>$2 N \ln N$</td>
<td>$\frac{1}{2} N^2$</td>
<td>$N \log N$ probabilistic guarantee; fastest in practice</td>
</tr>
<tr>
<td>3-way quick</td>
<td>✔️</td>
<td>N</td>
<td>$2 N \ln N$</td>
<td>$\frac{1}{2} N^2$</td>
<td>improves quicksort when duplicate keys</td>
</tr>
<tr>
<td>heap</td>
<td>✔️</td>
<td>N</td>
<td>$2 N \lg N$</td>
<td>$2 N \lg N$</td>
<td>$N \log N$ guarantee; in-place</td>
</tr>
<tr>
<td>?</td>
<td>✔️ ✔️</td>
<td>N</td>
<td>$N \lg N$</td>
<td>$N \lg N$</td>
<td>holy sorting grail</td>
</tr>
</tbody>
</table>
2.4 Priority Queues

- API and elementary implementations
- binary heaps
- heapsort
- event-driven simulation
Molecular dynamics simulation of hard discs

Goal. Simulate the motion of N moving particles that behave according to the laws of elastic collision.
Molecular dynamics simulation of hard discs

Goal. Simulate the motion of N moving particles that behave according to the laws of elastic collision.

Hard disc model.
- Moving particles interact via elastic collisions with each other and walls.
- Each particle is a disc with known position, velocity, mass, and radius.
- No other forces.

Significance. Relates macroscopic observables to microscopic dynamics.
- Einstein: explain Brownian motion of pollen grains.
Warmup: bouncing balls

Time-driven simulation. N bouncing balls in the unit square.

```java
public class BouncingBalls {
    public static void main(String[] args) {
        int N = Integer.parseInt(args[0]);
        Ball[] balls = new Ball[N];
        for (int i = 0; i < N; i++)
            balls[i] = new Ball();
        while(true)
        {
            StdDraw.clear();
            for (int i = 0; i < N; i++)
            {
                balls[i].move(0.5);
                balls[i].draw();
            }
            StdDraw.show(50);
        }
    }
}
```

% java BouncingBalls 100
Warmup: bouncing balls

public class Ball
{
 private double rx, ry; // position
 private double vx, vy; // velocity
 private final double radius; // radius
 public Ball(...)
 { /* initialize position and velocity */

 public void move(double dt)
 {
 if (((rx + vx*dt < radius) || (rx + vx*dt > 1.0 - radius)) { vx = -vx; }
 if (((ry + vy*dt < radius) || (ry + vy*dt > 1.0 - radius)) { vy = -vy; }
 rx = rx + vx*dt;
 ry = ry + vy*dt;
 }
 public void draw()
 { StdDraw.filledCircle(rx, ry, radius); }
 }

Missing. Check for balls colliding with each other.

- Physics problems: when? what effect?
- CS problems: which object does the check? too many checks?
Time-driven simulation

- Discretize time in quanta of size dt.
- Update the position of each particle after every dt units of time, and check for overlaps.
- If overlap, roll back the clock to the time of the collision, update the velocities of the colliding particles, and continue the simulation.
Main drawbacks.

- $\sim N^2/2$ overlap checks per time quantum.
- Simulation is too slow if dt is very small.
- May miss collisions if dt is too large.
 (if colliding particles fail to overlap when we are looking)
Event-driven simulation

Change state only when something happens.
- Between collisions, particles move in straight-line trajectories.
- Focus only on times when collisions occur.
- Maintain PQ of collision events, prioritized by time.
- Remove the min = get next collision.

Collision prediction. Given position, velocity, and radius of a particle, when will it collide next with a wall or another particle?

Collision resolution. If collision occurs, update colliding particle(s) according to laws of elastic collisions.
Collision prediction and resolution.

- Particle of radius s at position (rx, ry).
- Particle moving in unit box with velocity (vx, vy).
- Will it collide with a vertical wall? If so, when?

Prediction (at time t)

$dt \equiv time\ to\ hit\ wall$

$= distance/velocity$

$= (1 - s - rx)/vx$

Resolution (at time $t + dt$)

velocity after collision $= (-v_x, v_y)$

position after collision $= (1 - s, ry + vy dt)$

Predicting and resolving a particle-wall collision
Particle-particle collision prediction

Collision prediction.

- Particle i: radius s_i, position (r_{xi}, r_{yi}), velocity (v_{xi}, v_{yi}).
- Particle j: radius s_j, position (r_{xj}, r_{yj}), velocity (v_{xj}, v_{yj}).
- Will particles i and j collide? If so, when?
Particle-particle collision prediction

Collision prediction.

- Particle i: radius s_i, position (rx_i, ry_i), velocity (vx_i, vy_i).
- Particle j: radius s_j, position (rx_j, ry_j), velocity (vx_j, vy_j).
- Will particles i and j collide? If so, when?

\[
\Delta t = \begin{cases}
\infty & \text{if } \Delta v \cdot \Delta r \geq 0 \\
\infty & \text{if } d < 0 \\
- \frac{\Delta v \cdot \Delta r + \sqrt{d}}{\Delta v \cdot \Delta v} & \text{otherwise}
\end{cases}
\]

\[
d = (\Delta v \cdot \Delta r)^2 - (\Delta v \cdot \Delta v) (\Delta r \cdot \Delta r - \sigma^2) \\
\sigma = \sigma_i + \sigma_j
\]

\[
\Delta v = (\Delta vx, \Delta vy) = (vx_i - vx_j, vy_i - vy_j) \\
\Delta r = (\Delta rx, \Delta ry) = (rx_i - rx_j, ry_i - ry_j)
\]

Important note: This is physics, so we won’t be testing you on it!
Particle-particle collision resolution

Collision resolution. When two particles collide, how does velocity change?

\[
\begin{align*}
 v_{x_i}' & = v_{x_i} + \frac{J_x}{m_i} \\
 v_{y_i}' & = v_{y_i} + \frac{J_y}{m_i} \\
 v_{x_j}' & = v_{x_j} - \frac{J_x}{m_j} \\
 v_{y_j}' & = v_{y_j} - \frac{J_y}{m_j}
\end{align*}
\]

Newton's second law (momentum form)

\[
J_x = \frac{J \Delta r_x}{\sigma}, \quad J_y = \frac{J \Delta r_y}{\sigma}, \quad J = \frac{2 m_i m_j (\Delta v \cdot \Delta r)}{\sigma (m_i + m_j)}
\]

Impulse due to normal force (conservation of energy, conservation of momentum)

Important note: This is physics, so we won't be testing you on it!
public class Particle
{
 private double rx, ry; // position
 private double vx, vy; // velocity
 private final double radius; // radius
 private final double mass; // mass
 private int count; // number of collisions

 public Particle(...) { }

 public void move(double dt) { }
 public void draw() { }

 public double timeToHit(Particle that) { }
 public double timeToHitVerticalWall() { }
 public double timeToHitHorizontalWall() { }

 public void bounceOff(Particle that) { }
 public void bounceOffVerticalWall() { }
 public void bounceOffHorizontalWall() { }
}

predict collision with particle or wall
resolve collision with particle or wall
Particle-particle collision and resolution implementation

```
public double timeToHit(Particle that) {
    if (this == that) return INFINITY;
    double dx = that.rx - this.rx, dy = that.ry - this.ry;
    double dvx = that.vx - this.vx; dvy = that.vy - this.vy;
    double dvdr = dx*dvx + dy*dvy;
    if (dvdr > 0) return INFINITY;
    double dvdv = dvx*dvx + dvy*dvy;
    double drdr = dx*dx + dy*dy;
    double sigma = this.radius + that.radius;
    double d = (dvdr*dvdr) - dvdv * (drdr - sigma*sigma);
    if (d < 0) return INFINITY;
    return -(dvdr + Math.sqrt(d)) / dvdv;
}
```

```
public void bounceOff(Particle that) {
    double dx = that.rx - this.rx, dy = that.ry - this.ry;
    double dvx = that.vx - this.vx; dvy = that.vy - this.vy;
    double dvdr = dx*dvx + dy*dvy;
    double dist = this.radius + that.radius;
    double J = 2 * this.mass * that.mass * dvdr / ((this.mass + that.mass) * dist);
    double Jx = J * dx / dist;
    double Jy = J * dy / dist;
    this.vx += Jx / this.mass;
    this.vy += Jy / this.mass;
    that.vx -= Jx / that.mass;
    that.vy -= Jy / that.mass;
    this.count++;
    that.count++;
}
```

Important note: This is physics, so we won’t be testing you on it!
Collision system: event-driven simulation main loop

Initialization.

- Fill PQ with all potential particle-wall collisions.
- Fill PQ with all potential particle-particle collisions.

Main loop.

- Delete the impending event from PQ (min priority = \(t \)).
- If the event has been invalidated, ignore it.
- Advance all particles to time \(t \), on a straight-line trajectory.
- Update the velocities of the colliding particle(s).
- Predict future particle-wall and particle-particle collisions involving the colliding particle(s) and insert events onto PQ.

“potential” since collision may not happen if some other collision intervenes
Event data type

Conventions.

- Neither particle null ⇒ particle-particle collision.
- One particle null ⇒ particle-wall collision.
- Both particles null ⇒ redraw event.

```java
private class Event implements Comparable<Event>
{
    private double time;       // time of event
    private Particle a, b;     // particles involved in event
    private int countA, countB; // collision counts for a and b

    public Event(double t, Particle a, Particle b) {}

    public int compareTo(Event that)
    {  return this.time - that.time;  }

    public boolean isValid()
    {  }
}
```
Collision system implementation: skeleton

```java
public class CollisionSystem {
    private MinPQ<Event> pq; // the priority queue
    private double t = 0.0; // simulation clock time
    private Particle[] particles; // the array of particles

    public CollisionSystem(Particle[] particles) {}

    private void predict(Particle a) {
        if (a == null) return;
        for (int i = 0; i < N; i++)
            double dt = a.timeToHit(particles[i]);
            pq.insert(new Event(t + dt, a, particles[i]));
        pq.insert(new Event(t + a.timeToHitVerticalWall(), a, null));
        pq.insert(new Event(t + a.timeToHitHorizontalWall(), null, a));
    }

    private void redraw() {}

    public void simulate() { /* see next slide */ }
}
```

add to PQ all particle-wall and particle-particle collisions involving this particle
Collision system implementation: main event-driven simulation loop

```java
public void simulate()
{
    pq = new MinPQ<Event>();
    for(int i = 0; i < N; i++) predict(particles[i]);
    pq.insert(new Event(0, null, null));

    while(!pq.isEmpty())
    {
        Event event = pq.delMin();
        if(!event.isValid()) continue;
        Particle a = event.a;
        Particle b = event.b;

        for(int i = 0; i < N; i++)
            particles[i].move(event.time - t);
        t = event.time;

        if (a != null && b != null) a.bounceOff(b);
        else if (a != null && b == null) a.bounceOffVerticalWall();
        else if (a == null && b != null) b.bounceOffHorizontalWall();
        else if (a == null && b == null) redraw();

        predict(a);
        predict(b);
    }
}
```

- initialize PQ with collision events and redraw event
- get next event
- update positions and time
- process event
- predict new events based on changes
Particle collision simulation example 1

% java CollisionSystem 100
Particle collision simulation example 2

% java CollisionSystem < billiards.txt
Particle collision simulation example 3

% java CollisionSystem < brownian.txt
Particle collision simulation example 4

% java CollisionSystem < diffusion.txt