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Abstract. We introduce a Sumii-Pierce-Koutavas-Wand-style bisimu-
lation for Pitts and Stark’s nu-calculus, a simply-typed lambda calculus
with fresh name generation. This bisimulation implies contextual equiv-
alence and provides a usable and elementary method for establishing all
the subtle equivalences given by Stark. We also describe the formalization
of the metatheory and of the examples in the Coq proof assistant.

1 Introduction

Generative local names are ubiquitous: objects (as in Java), exceptions, refer-
ences (as in ML), channels (as in the π-calculus), cryptographic keys (as in
the spi-calculus or cryptographic lambda calculus) are all first-class things-with-
identity that can be freshly generated within some scope. The ν-calculus of Pitts
and Stark [10, 11] is a simply typed lambda calculus over the base types of names,
ν, and booleans, o, that captures the essence of this kind of situation in a de-
ceptively minimal way. Names can be generated freshly, tested for equality and
passed around, but that is all; there are no other effects (not even divergence)
in the language. Though austere, the ν-calculus can express many important
aspects of generativity, locality and independence, and has proved to have a
remarkably complex theory. The central problem is to find models and reason-
ing principles for establishing contextual equivalence of ν-calculus terms. The
interaction of generativity with higher-order functions and the restricted nature
of contexts lead to various subtle and hard-to-prove equivalences, of which the
canonical ‘hard’ example is the following:

νn. νn′. λf : ν → o. f n=f n ′ ∼= λf : ν → o. true (1)

The LHS generates two fresh names, n and n ′, and yields an abstraction that
accepts a function f from names to booleans and returns the result of comparing
f n with f n ′. The intuition here is that the two names ‘leak’ into f but they
never escape its dynamic extent. The subtlety of the ν-calculus is indicated by
the following inequivalence, which similar intuitions might lead one to believe
to be an equivalence.

νn. λf : ν → o. νn′. f n=f n ′ 6∼= λf : ν → o. true

Pitts and Stark have used logical relations to establish many equivalences, both
directly over the operational semantics and denotationally, refining a model in
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the functor category SetI . Yang and Nowak [14] define a Kripke logical relation
over a similar functor category model. None of these techniques is complete,
however, failing in particular to prove equivalences such as (1) above. Jeffrey
and Rathke [5] define a sound and complete bisimulation for an extension of the
ν-calculus with assignment (for which (1) is not a valid equivalence) and observe
that their analysis “illuminates the difficulties involved in finding fully abstract
models for ν-calculus proper”. More recently, the problem has been attacked
using game semantics. Laird [9] constructs a game model using automorphisms
of names that is fully abstract for a language like that of Jeffrey and Rathke.
Abramsky et al [1] use games in the topos of FM-sets to construct the first fully
abstract model of ν-calculus proper (and the first to validate (1)).

In this paper, we reason about contextual equivalence in the ν-calculus using
bisimulation, which is rather more elementary than games in nominal sets. The
form of bisimulation we use was introduced by Sumii and Pierce for proving
equivalences in lambda calculi with cryptographic operations [12] and existential
and recursive types [13] and later developed by Koutavas and Wand for reasoning
about untyped imperative higher-order [6] and object [7] calculi. Instead of just
being a binary relation on terms, Sumii and Pierce’s bisimulations are sets of
relations, each element of which intuitively corresponds to a different ‘state of
knowledge’ of the surrounding context. We too will work with sets,

�
, of typed

relations, R, each of which is a set of 6-tuples; each tuple relates two sets of
(generated) names, s and s ′, and two terms e and e ′ of the same type T under
the same typing environment E ; we’ll write

s, s′, E ` e R e′ : T

for such a tuple in R.
The theoretical development broadly follows that of previous work by Koutavas

and Wand [6–8]. We start by defining when a set of relations is adequate — a
restatement of the conditions for being contained in contextual equivalence that
is arranged to be establishable by induction. We then investigate the class of all
such inductive proofs by abstracting over the actual contents of the sets and at-
tempting a proof construction scheme. By this process we find proof obligations
that the sets should satisfy in order to be adequate. Our main theorem says that
if a set satisfies exactly these conditions, then it is adequate, and, by soundness,
all terms related under the empty stores in this set are contextually equivalent.

Having a provably sound (and even complete) reasoning principle is good,
but we also want something that is usable in practice. A further contribution,
beyond the development of the general metatheory, is that we show that our
bisimulation really does give an elementary method for establishing interesting
equivalences, including the tricky (1) above. The proof of (1) is particularly in-
teresting in making two uses of our technique: the adequacy of an initial relation
is established via that of another. The third contribution is a formalization of
the metatheory and of the examples in the Coq theorem prover. We discuss
the formalization in Section 5; the proof script is also available via the authors’
homepages.
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T ::= o | ν | T → T Types

e ::= x | n | true | false | λx:T. e | e e Expressions

| new | e=e | if e then e else e

s; E ` e: T

n ∈ s

s; E ` n: ν s; E ` new: ν

s; E ` e1: ν s; E ` e2: ν

s; E ` e1=e2: o

s1 ` e ⇓T (s2) v

n 6∈ s

s ` new ⇓ν ({n}) n

s ` e1 ⇓ν (s1)n1 s∪s1 ` e2 ⇓ν (s2) n2

s ` e1=e2 ⇓o (s1∪s2) b

Fig. 1. Syntax and some typing and evaluation rules of the ν-calculus

2 The ν-calculus

The ν-calculus is a simply-typed lambda calculus over base types of names and
booleans, extended with a conditional construct and operations for generating
and comparing names. The expression new generates a fresh name, and n1=n2

returns true when n1 and n2 are the same name. We often write νx. e as an
abbreviation of the expression (λx: ν. e) new.3 We also use an overbar notation
to denote sequences.

The typing judgment s; E ` e:T says that the expression e has type T under
the finite set of names (‘nameset’) s and typing environment E . The evaluation
judgment s ` e ⇓T (s′) w, says that the closed expression e of type T , under
the nameset s , terminates to the value w producing a set of fresh names s ′. We
write s` e⇓k

T (s′) w when the evaluation tree s` e⇓T (s′) w has size less than k .
Figure 1 shows the syntax, typing and evaluation rules that involve names.

Evaluation is total and deterministic, modulo fresh name generation. It is
also stable under the addition and removal of unused names.

Lemma 2.1. If s ` e ⇓o (s0) w and s ` e ⇓o (s′0) w′ then w = w′.

Lemma 2.2. If s; ∅ ` e: T then there exist s0 and w such that s ` e ⇓T (s0) w.

Lemma 2.3 (Garbage Addition). If s1 ` e ⇓k
T (s3) w and s2 ∩ s3 = ∅ then

s1 ∪ s2 ` e ⇓k
T (s3) w.

Lemma 2.4 (Garbage Collection). If s1∪s2`e⇓k
T (s3) w and s2∩names(e) =

∅ then
s1 ` e ⇓k

T (s3) w.

3 Pitts and Stark take νx. e as primitive and define new as νx. x – the presentations
are entirely equivalent.
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3 Equivalence and Adequacy

We develop a sound equivalence theory with respect to contextual equivalence.
All the definitions and proofs in this section, with the exception (at the time of
writing) of the context lemma (Lemma 3.12), which was proved by Stark [11],
have been mechanized in the Coq theorem prover.

We build our theory on type-respecting relations from the domain:

Ns×Ns ×Env×Exp ×Exp×Typ,

and write s, s′, E ` e R e′ : T when (s, s′, E, e, e′, T ) ∈ R, and s, s′ ` e R e′ : T
when (s, s′, ∅, e, e′, T ) ∈ R.

Contextual Equivalence is such a relation: each 6-tuple contains two identical
namesets and two terms of the same type under the same typing environment.

Definition 3.1 (Contextual Equivalence (∼=)). Contextual equivalence is a
type-respecting relation, such that s, s, E ` e ∼= e′ : T iff for all contexts C [ ] with
names in s, which bind dom(E) at their hole, and for all boolean values b:

(∃ s1. s ` C [e] ⇓o (s1) b) ⇐⇒ (∃ s′1. s ` C [e′] ⇓o (s′1) b)

For proving some equivalence we relax the per-tuple restriction for identical
namesets allowing us to reason about related namesets. We do impose, though,
a per-relation restriction of all tuples having the same pair of namesets. Such
a relation—which we call a generalized typed relation (GTRel)—can be seen as
representing the part of the equivalence that holds under that particular pair
of namesets. We therefore need to handle sets of GTRels to describe the whole
equivalence. We further require that GTRels contain closed expressions.

Definition 3.2 (Generalized Typed Relations (GTRel)). The type-respecting,
non-empty relation R is a GTRel iff for any s1, s

′
1, E1 ` e1 R e′1 : T1 and

s2, s
′
2, E2 ` e2 R e′2 : T2:

s1 = s2 ∧ s′1 = s′2 ∧ E1 = E2 = ∅

We write Rs,s′ for a GTRel with tuples containing the namesets s and s ′. A
GTRel extends another when the former preserves the equivalences of the latter
under extended stores.

Definition 3.3 (GTRel Extension (v)). We say that Q extends R, and
write R v Q, iff for all s, s′ ` e R e′ : T there exist fresh s1 and s ′1 , such that

s]s1, s
′]s′1 ` e Q e′ : T

The following constructor projects all equivalences of a GTRel to extended
stores:

Definition 3.4 (Projection).

Rs∪s0,s∪s′

0 = {(s∪s0, s
′∪s′0, e, e

′, T ) | (s, s′ ` e R e′ : T )}
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We define the GTRel of contexts with R-related values in their holes:

Definition 3.5 (Id ∅[R])). s, s′`d[u/x] Id∅[R] d[u′/x] :T iff there exist Tx such
that:

∅; x: Tx ` d: T ∧ s, s′,`u R u′ : Tx

Lemma 3.6. If R is a GTRel then Id∅[R] is also a GTRel.

Lemma 3.7. If R is a GTRel, then R ⊆ Id ∅[R].

As mentioned earlier, we prove an equivalence by reasoning about sets of
GTRels. We will show that the equivalences in such a set are valid iff the set is
adequate.

Definition 3.8 (Adequacy). A set of GTRels,
�
, is adequate iff for any R ∈

�
, and s, s′ ` e Id∅[R] e′ : T the following holds:

∀ k, s1, w. s ` e ⇓k
T (s1) w

(∃ s′1, w
′,Q . s′ ` e′ ⇓T (s′1) w′

∧ (T = o) =⇒ (w = w′)

∧ s]s1, s
′]s′1 ` w Id∅[Q ] w′ : T

∧R v Q
∧Q ∈

�
)

and so does the converse.

Adequacy is a closure condition for a set
�

provable by induction on k .
Following previous work [6–8], we find ‘smaller’ closure conditions for

�
via a

proof construction scheme: we investigate the class of all such inductive proofs
by abstracting over the actual contents of the sets and attempting a hypothetical
proof. At the places where the proof can not proceed we find necessary proof
obligations for

�
. Our main theorem states that if

�
satisfies exactly these

conditions, then it is adequate, and thus, by soundness, all terms related in
�

under same stores are contextually equivalent.

Definition 3.9 (Induction Hypotheses).

IH �� (k) = ∀ s, s′, e, e′, T,R, s1, w.

(s, s′ ` e Id∅[R] e′ : T )

∧ (s ` e ⇓k
T (s1) w)

∃ s′1, w
′,Q . (s′ ` e′ ⇓T (s′1) w′)

∧ (T = o) =⇒ (w = w′)

∧ (s]s1, s
′]s′1 ` w Id∅[Q ] w′ : T )

∧R v Q
∧Q ∈

�

Similarly we define IH
�� (k) for the induction hypothesis of the reverse direction.
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Theorem 3.10 (Adequacy Conditions). A set
�

of GTRels is adequate iff
for all R ∈

�
, the following conditions are satisfied:

1. if s, s′ ` v R v′ : o, then v = v′,
2. if s, s′ ` n1 R n′

1 : ν, and s, s′ ` n2 R n′
2 : ν, then

n1 = n′
1 ⇐⇒ n2 = n′

2

3. if n 6∈ s then there exists n′ 6∈ s′ and Q, such that

(s]{n}, s′]{n′} ` n Q n′ : ν) ∧ R v Q ∧ Q ∈
�

and the converse,
4. if s, s′ ` e R e′ : T , IH �� (k) holds, and

s ` e ⇓k+1

T (s1) w

then there exist s ′1 , w ′, and Q such that

(s′ ` e′ ⇓T (s′1) w′) ∧ (s]s1, s
′]s′1 ` w Id∅[Q ] w′ : T ) ∧ (R v Q) ∧ (Q ∈

�
)

and the converse.
5. if s, s′ ` (λx: U. e) R (λx: U. e′) : U → T , IH �� (k) holds, and

s, s′ ` v Id∅[R] v′ : U ∧ s ` e[v/x] ⇓k
T (s1) w

then there exist s ′1 , w ′, and Q such that

(s′`e′[v′/x]⇓T (s′1) w′) ∧ (s]s1, s
′]s′1`w Id∅[Q ] w′:T ) ∧ (R v Q) ∧ (Q ∈

�
)

and the converse.

Proof. The direction proving that the Adequacy Conditions imply Adequacy is
done by induction on the evaluation measure k in the definition of Adequacy.

The other direction is done by inspecting that if one of the conditions is not
satisfied for some R ∈

�
then there is a pair of contexts in Id ∅[R] that would

invalidate the definition of Adequacy.

Adequacy is defined on sets of GTRels, which contain closed expressions and
related stores. We define adequate equivalence on open expressions and identical
stores and show that it is contained in contextual equivalence.

Definition 3.11 (Adequate Equivalence (≡)). Adequate equivalence is the
largest type-respecting relation for which s, s, x: Tx ` e ≡ e′ : T iff for all s0 , v ,
with s∪s0; ∅ ` v: Tx, there exist adequate

�
and R ∈

�
such that:

s∪s0, s∪s0 ` e[v/x] R e′[v/x] : T ∧ ∀n ∈ s∪s0. s∪s0, s∪s0 ` n R n : ν

For our proof of soundness we make use of the following context lemma,
proved by Stark in [11].

Lemma 3.12 (Context Lemma). s, s, x: Tx ` e ∼= e′ : T iff for any nameset
s0 , disjoint from s, function f , and values v with:

s]s0; ∅ ` f :T → o ∧ s]s0; ∅ ` v: Tx

and any boolean value b, the following holds:

(∃ s1. s]s0 ` f e[v/x] ⇓o (s1) b) ⇐⇒ (∃ s′1. s]s0 ` f e′[v/x] ⇓o (s′1) b)
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(∅, ∅, ∅, M, N, ν → o) ∈
�

Rs,s′ ∈
�

n 6∈ s n
′ 6∈ s

′

R
s]{n},s′]{n′} ∪ {(s]{n}, s′]{n′}, ∅, n, n

′
, ν)} ∈

�

Rs,s′ ∈
�

s, s
′ ` M R N : ν → o n 6∈ s

R
s]{n},s∪∅ ∪ {(s]{n}, s′, ∅, λxνx=n, N, ν → o)} ∈

�

Fig. 2. Construction of the set
�

for the first example.

Theorem 3.13 (Soundness).

s, s, E ` e ≡ e′ : T =⇒ s, s, E ` e ∼= e′ : T

Proof. By using the context lemma 3.12 and showing that when s∪s0, s∪s0 `
e[v/x] R e′[v/x] : T , then s∪s0, s∪s0 ` f e[v/x] Id∅[R] f e′[v/x] : o.

We conjecture that adequate equivalence is also complete with respect to con-
textual equivalence, but have not so far succeeded in proving it due to technical
complications.

4 Examples

We first show the proof of a more straightforward equivalence before proving the
equivalence discussed in the introduction.

4.1 A Simple Equivalence

M
def
= νn. λx: ν. x=n

N
def
= λx: ν. false

The intent here is to show that a fresh name is indeed fresh; i.e. the context
has no way of knowing it and provide it to the abstractions. To prove this
equivalence we have to create an adequate set of GTRels that relates M and N
(at least) under identical namesets, and then show that this set is closed under
the conditions of Theorem 3.10.

Writing such a set,
�

, here is easy—the construction is shown in Figure 2.
First M and N are added to

�
, under the empty namesets, by the first rule of

the Figure. Then the set is closed with arbitrary related fresh locations by the
second rule, satisfying condition 3 of the Theorem. Moreover this rule guarantees
that the two expressions are related under any pairs of identical namesets.

Finally the values that M and N evaluate to are added to the set by the
last inductive rule, satisfying condition 4. The evaluation of M produces a new
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(∅, ∅, ∅, M, N, (ν → o) → o) ∈
�

Rs,s′ ∈
�

n 6∈ s n
′ 6∈ s

′

R
s]{n},s′]{n′} ∪ {(s]{n}, s′]{n′}, ∅, n, n

′
, ν)} ∈

�

Rs,s′ ∈
�

s, s
′ ` M R N : (ν → o) → o n1 6∈ s n2 6∈ s]{n1}

R
s]{n1,n2},s∪∅ ∪ {(s]{n1, n2}, s

′
, ∅, U(n1, n2), N, (ν → o) → o)} ∈

�

Rs,s′ ∈
�

s ∩ s0 = ∅

R
s]s0,s′

∈
�

Fig. 3. Construction of the set
�

for the second example.

name, which is then added in the left-hand side store of the tuple relating the
two values.

We now have to satisfy condition 5 for these values. This is immediate because
the freshly generated name does not appear in related-expression position in any
R ∈

�
, and thus in any Id∅[R]. Therefore it can never be an argument to the

left-hand side procedure, hence both of them will always return false.

4.2 The ‘Hard’ Equivalence

Here we revisit the equivalence discussed in the introduction and prove it using
the bisimulation method.

The two equivalent expressions are the following:

M
def
= νn1. νn2. U(n1, n2)

N
def
= λf : ν → o. true

where U(x, y)
def
= λf : ν → o. (f x)=(f y), and the boolean equal operator is syn-

tactic sugar for the equivalent expression using nested conditional statements.
We start our proof as before by inductively constructing a set of GTRels,

which we have to show adequate. This set is shown in Figure 3.

Lemma 4.1. If R ∈
�
, then R is an HGTRel.

Proof. By induction on the structure of
�

.

Lemma 4.2. If R ∈
�
, and s, s′ ` e R e′ : T , then one of the following is true:

– e = M , e′ = N , and T = (ν → o) → o, or
– there exist n and n ′, such that e = n, e′ = n′, T = ν, n ∈ s, and n′ ∈ s′, or
– there exist n1 and n2 , such that e = U(n1, n2), e′ = N , T = (ν → o) → o,

n1 ∈ s, and n2 ∈ s.
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(∅, ∅, ∅, M, M, (ν → o) → o) ∈ �
Rs,s ∈ � n 6∈ s

R
s]{n},s]{n} ∪ {(s]{n}, s]{n}, ∅, n, n, ν)} ∈ �

Rs,s ∈ � s, s ` M R M : (ν → o) → o n1 6∈ s n2 6∈ s]{n1}

R
s]{n1,n2},s]{n1,n2} ∪

{(s]{n1, n2}, s]{n1, n2}, ∅, n1, n2, ν)} ∪
{(s]{n1, n2}, s]{n1, n2}, ∅, n2, n1, ν)} ∪
{(s]{n1, n2}, s]{n1, n2}, ∅, U(n1, n2), U(n1, n2), (ν → o) → o)} ∈ �

Rs,s ∈ � s ∩ s0 = ∅

R
s]s0,s]s0 ∈ �

Fig. 4. Construction of the auxiliary set � for the second example.

Proof. By induction on the structure of
�

.

Lemma 4.3. If R ∈
�
, s, s′ ` n1 R n′

1 : ν, and s, s′ ` n2 R n′
2 : ν, then

n1 = n2 ⇐⇒ n′
1 = n′

2

Proof. By induction on the structure of
�

, using Lemmas 4.1 and 4.2.

To prove the equivalence of M and N we have to show that
�

satisfies the con-
ditions for adequacy of Theorem 3.10. We take any R ∈

�
and invoke Lemma 4.2.

Condition 1 is trivially satisfied; condition 2 is satisfied by Lemma 4.3. Condi-
tions 3 and 4 are obviously satisfied by construction of

�
.

The interesting part of this proof is to show that when Rs,s′ ∈
�

, condition 5
holds for the tuple

s, s′ ` U(n1, n2) R N : (ν → o) → o

We have to show that if s, s′ ` f Id∅[R] f ′ : ν → o, and s ` f n1=f ′ n2 ⇓o (s0) w
then, there exists Q , such that:

s]s0, s
′ ` w Id∅[Q ] true : o ∧ R v Q ∧ Q ∈

�

Proving R v Q and Q ∈
�

for any s0 is easily done by construction of
�

. What
remains to be shown is that w = true. This we do by an interesting re-use of
our method.

We form an auxiliary set of GTRels, � , shown in Figure 4. The intuition
behind the construction of � is that we want for the above s , f , n1 , and n2 to
exist some P ∈ � , such that:

s, s ` (f n1) Id∅[P ] (f n2) : o
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Then, by showing that � is adequate, we prove that the two applications will
evaluate to the same final values, and thus the boolean test f n1=f n2 will eval-
uate to true.

We first show that for each GTRel in
�

there exists another in � that contains
all the left-hand side expressions and namesets of the former.

Lemma 4.4. For all R ∈
�
, there exists P ∈ � , such that, for all s, s’, e, e’,

T:

s, s′ ` e R e′ : T =⇒ s, s ` e P e : T

Proof. By induction on the structure of
�

.

This property is extended to the context closures of the relations.

Corollary 4.5. For all R ∈
�
, there exists P ∈ � , such that, for all s, s’, e, e’,

T:

s, s′ ` e Id∅[R] e′ : T =⇒ s, s ` e Id∅[P ] e : T

We can now write the property of the applications f n1 and f n2 discussed
earlier.

Lemma 4.6. For all R ∈
�

with

s, s′ ` U(n1, n2) R N : (ν → o) → o ∧ s, s′ ` f Id∅[R] f ′ : ν → o

there exists P ∈ � , such that

s, s ` (f n1) Id∅[P ] (f n2) : o

Proof. Trivial by Lemmas 4.4, 4.5, and 3.7.

What remains to be shown is that � is adequate and then use this property
to reason about the final values of the two applications.

Lemma 4.7. If P ∈ � , then P is an GTRel.

Proof. By induction on the structure of � .

Lemma 4.8. If P ∈ � , and s, s′`e P e′ :T , then s = s′, and one of the following
is true:

– e = M , e′ = M , and T = (ν → o) → o, or
– there exist n and n ′, such that e = n, e′ = n′, T = ν, n ∈ s, and n′ ∈ s′, or
– there exist n1 and n2 , such that e = U(n1, n2), e′ = U(n1, n2), n1, n2 ∈ s,

T = (ν → o) → o, and

s, s′ ` n1 P n2 : ν ∧ s, s′ ` n2 P n1 : ν

Proof. By induction on the structure of � .
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Lemma 4.9. If P ∈ � , s, s′ ` n1 P n′
1 : ν, and s, s′ ` n2 P n′

2 : ν, then

n1 = n2 ⇐⇒ n′
1 = n′

2

Proof. By induction on the structure of � , using Lemmas 4.7 and 4.8.

Lemma 4.10. � is adequate.

Proof. By showing that � satisfies the conditions of Theorem 3.10, using Lemmas
4.7, 4.8, and 4.9.

We can now complete the proof of adequacy for
�

. For any Rs,s′ ∈
�

, with

s, s′ ` U(n1, n2) R N : (ν → o) → o ∧ s, s′ ` f Id∅[R] f ′ : ν → o

we know that there exist s0 , w , such that

s ` f n1=f n2 ⇓o (s0) w

which implies that there exist s1 ,s2 , w1 , and w2 such that s0 = s1]s2 and

s ` f n1 ⇓o (s1) w1 (2)

s]s1 ` f n2 ⇓o (s2) w2 (3)

and by Lemma 2.4 and (3) we get

s ` f n2 ⇓o (s2) w2 (4)

Moreover, by Lemma 4.6, there exists P ∈ � , such that

s, s ` (f n1) Id∅[P ] (f n2) : o

and from Lemma 4.10, Definition 3.8, (2), and (4) we get w1 = w2. Thus, the
result of the boolean equality test, w , is true, and the terms are contextually
equivalent.

5 The Formalization in Coq

We have formalized the semantics of the ν-calculus and our bisimulation theory
in the Coq theorem prover [4]. The mechanized development covers both the
metatheory of Section 3 and the examples given in Section 4.

There are still two axioms in our development, concerning well known basic
properties of ν-calculus evaluation that are proved in Stark’s thesis [11]. These
are the totality Lemma (2.2) and the determinacy Lemma (2.1). These are en-
tirely standard results and proofs, the mechanization of which is not especially
interesting, though we do intend to do it in due course just so as to have a
complete self-contained development.
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5.1 Semantics of the ν-calculus

There has been much recent research effort expended on reducing the pain of
doing mechanized reasoning about syntax involving binders, most notably under
the umbrella of the POPLmark challenge [3]. We were pleased to find that this
effort is paying off: our formalization uses a Coq framework for ‘locally nameless’
reasoning about binding due to Aydemir et al.[2], which worked very well.

The locally nameless style uses de Bruijin indices for bound identifiers and
names for free variables. The benefit of this representation is that each alpha
equivalence class has a unique representation. A further feature of the framework
is the use of cofinite quantification for free variables; the definitions and tactics
provided by Aydemir et al. make it very convenient to generate fresh variable
names whenever they are required in proofs.

Following this framework we define an inductive set of pre-terms that con-
tains the encodings of all valid terms of the ν-calculus, as well as some invalid
ones (e.g. terms with wrong de Bruijin indices). Due to space limitations we
show only part of this construction here:

Inductive trm : Set :=

...

| bvar : nat -> trm

| fvar : var -> trm

| abs : typ -> trm -> trm

This set of pre-terms is sufficient for many of our lemmas, usually the ones
that require induction over terms. For others, as well as for the definition of
the typing relation, one needs to exclude the illegal terms, which is done by the
following inductive predicate:

Inductive term : trm -> Prop :=

...

| term_var : forall x, term (fvar x)

| term_nam : forall (n : nam), term (name n)

| term_abs : forall L t1 U,

(forall x, x \notin L -> term (t1 ^ x))

-> term (abs U t1)

Top-level de Bruijin indices are not valid terms; they can only appear un-
der binders. Even then there should not be any dangling indices. The rule for
abstractions excludes such terms. It states that the abstraction is valid when
its body, with all references to the abstraction’s binder replaced with a fresh
variable (t1 ^ x), is a valid term. Freshness here is expressed by requiring to
provide a finite set of names, L, for which all names not in that set prove the
premise. This co-finite quantification establishes stronger induction hypotheses
than just requiring x to be disjoint from the free variables in t1.

A similar co-finite quantification is used at the typing relation.

Inductive typing : nameset -> env -> trm -> typ -> Prop :=
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...

| typing_abs : forall L s E U T t1,

(forall x, x \notin L -> (typing s (E & x ~ U) (t1 ^ x) T))

-> typing s E (abs U t1) (arrow U T)

Here E & E’ concatenates two environments (or substitutions), and x ~ U is
the unary environment that binds x to the type U.

For our formalization of bisimulations we needed multiple substitutions, which
we got by instantiating the polymorphic library for environments from [2] to give
finite maps from identifiers to trms and then defining a fold function to actually
apply the substitution.

5.2 Relations

We encode in Coq all definitions of Section 3. Most of them are straightforwardly
transcribed. The most interesting one is the context closure of Definition 3.5. We
encode it in two parts.

First we construct the [v/x] and [v′/x] of Definition 3.5 by defining an induc-
tive relation on ‘synchronized’ environments and substitutions containing closed
expressions from a GTRel R.

Inductive InSync (R : GTRel) (s1 s2 : nameset)

: env -> substitution -> substitution -> Prop :=

| insync_empty :

nonempty R s1 s2 empty

-> InSync R s1 s2 empty empty empty

| insync_push :

forall E sub1 sub2 x T t1 t2,

InSync R s1 s2 E sub1 sub2

-> R s1 s2 empty t1 t2 T

-> closed_subst (sub1 & x ~ t1)

-> closed_subst (sub2 & x ~ t2)

-> InSync R s1 s2 (E & x ~ T) (sub1 & x ~ t1) (sub2 & x ~ t2).

For a non-empty R GTRel, containing namesets s and s ′, the empty environ-
ment and the empty substitutions are synchronized. When E, sub1, are sub2 are
synchronized under the relation R, and the stores s1 and s2, then their extension
with a single mapping from a variable x to, respectively, a type T, a term t1,
and a term t2 from R is also synchronized. The predicate closed subst ensures
that the resulting substitutions are valid. R is normally type-respecting, thus the
constructed sub1 and sub2 can be used to close any term typable under E.

We then define a constructor that combines two relations, using substitutions.
By giving the identity relation as the first argument and R as the second we get
the context closure Id∅[R]. This constructor is the following function that accepts
only the tuples that satisfy the predicate in it.

Definition substClosure (R : GTRel) (Q : GTRel) : GTRel :=

fun (s1 s2 : nameset) (E : env) (t1 t2 : trm) (T : typ) =>
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(E = empty)

/\ (exists sr1, exists sr2, exists sq1, exists sq2,

s1 = (sr1 (U) sq1)

/\ s2 = (sr2 (U) sq2)

/\ (exists sub1, exists sub2, exists td1, exists td2, exists E,

R sr1 sr2 E td1 td2 T

/\ InSync Q sq1 sq2 E sub1 sub2

/\ t1 = <[ sub1 ]> td1

/\ t2 = <[ sub2 ]> td2)).

where s1 (U) s2 is the syntax for union of namesets. This construction unions
the namesets from the two relations, but in the case of Id ∅[R], sr1 and sr2 are
always empty, thus all names come from the second relation.

The proof of soundness as well as the proofs for particular equivalences are
fairly long as they stand, but manageable. The approximate line counts of dif-
ferent sections of the Coq development are currently as follows:

Section Lines
Library from UPenn 3500
Semantics, general lemmas, multiple substitutions 3500
Infrastructure about relations 1900
Soundness proof 2800
Simple example 1000
Hard example 3000
Total 15700

6 Conclusions and Future Work

We have introduced a bisimulation for the ν-calculus that can be used to estab-
lish contextual equivalences that were previously only provable in rather sophis-
ticated game semantic models. Moreover we formalized its metatheory and the
proofs of these equivalences in Coq.

On the theoretical side, the most obvious next step is investigate complete-
ness of our method. Previous work on similar bisimulations for related calculi
gives us good reason to believe that the method is complete, but some tech-
nical difficulties have so far prevented us from a straightforward adaptation of
previous proofs.

The Coq development is a little on the large side, perhaps leading one to
question the viability of this technology. However, there is no use of automation
beyond that in the library from UPenn and the majority of the development
was carried out in around 3 months by someone with no previous experience
of mechanical theorem proving. The framework and library for locally nameless
reasoning was extremely useful. We remain convinced of the value of mechanizing
this style of reasoning, not just metatheory but also for specific examples, which
tend to involve long error-prone calculations that are inherently less interesting
than those required to establish general facts about the language.
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