Concurrent Strategies

Glynn Winskel, University of Cambridge Computer Laboratory
(Joint with Silvain Rideau, ENS Paris)

The next-generation domain theory? An intensional theory to capture the ways of computing, to near operational concerns and reasoning? An event-based theory?

A new result characterizing (nondeterministic) concurrent strategies
Representations of traditional domains

What is the information order? What are the ‘units’ of information?
Two answers:

(‘Topological’) [Scott]: Propositions about finite properties;
more information corresponds to more propositions being true.
Functions are ordered pointwise. Can represent domains via logical theories
(‘Information systems’, ‘Logic of domains’).

(‘Temporal’) [Berry]: Events (atomic actions);
more information corresponds to more events having occurred.
Intensional ‘stable order’ on ‘stable’ functions. (‘Stable domain theory’)
Can represent Berry’s dl domains as event structures.
Event structures

An *event structure* comprises \((E, \text{Con}, \leq)\), consisting of a set of *events* \(E\) - partially ordered by \(\leq\), the *causal dependency relation*, and - a nonempty family \(\text{Con}\) of finite subsets of \(E\), the *consistency relation*, which satisfy

\[
\{e' \mid e' \leq e\} \text{ is finite for all } e \in E,
\]

\[
\{e\} \in \text{Con} \text{ for all } e \in E,
\]

\[
Y \subseteq X \in \text{Con} \Rightarrow Y \in \text{Con}, \quad \text{and}
\]

\[
X \in \text{Con} \& e \leq e' \in X \Rightarrow X \cup \{e\} \in \text{Con}.
\]

Say \(e, e'\) are *concurrent* if \(\{e, e'\} \in \text{Con} \& e \not\sim e' \& e' \not\sim e\).

In games the relation of *immediate* dependency \(e \rightarrow e'\), meaning \(e\) and \(e'\) are distinct with \(e \leq e'\) and no event in between, will play a very important role.
Configurations of an event structure

The configurations, $C^\infty(E)$, of an event structure E consist of those subsets $x \subseteq E$ which are

Consistent: $\forall X \subseteq_{\text{fin}} x. \ X \in \text{Con}$ and

Down-closed: $\forall e, e'. e' \leq e \in x \Rightarrow e' \in x$.

For an event e the set $[e] =_{\text{def}} \{e' \in E \mid e' \leq e\}$ is a configuration describing the whole causal history of the event e.

$x \subseteq x'$, i.e. x is a sub-configuration of x', means that x is a sub-history of x'.

If E is countable, $(C^\infty(E), \subseteq)$ is a dI domain (and all such are so obtained). Here concentrate on the finite configurations $C(E)$.

Event structures as types, e.g., Streams as event structures

conflict (inconsistency) \rightarrow \text{immed. causal dependency}
Simple parallel composition

000 \ ~~ \ 001 \ 010 \ ~~ \ 011 \ 110 \ ~~ \ 111

00 \ ~~ \ 01 \ : \ ~~~ \ 11

0 \ ~~~ \ 1

aaa \ ~~ \ aab \ aba \ ~~ \ abb \ bba \ ~~~ \ bbb

aa \ ~~ \ ab \ : \ ~~~ \ bb

a \ ~~~ \ b
Event structures as processes

- Semantics of synchronising processes [Hoare, Milner] can be expressed in terms of universal constructions on event structures, and other models.
- Relations between models via adjunctions.

In this context, a simulation map of event structures \(f : E \to E' \) is a partial function on events \(f : E \to E' \) such that for all \(x \in C(E) \)

\[
fx \in C(E') \quad \text{and} \\
\text{if } e_1, e_2 \in x \text{ and } f(e_1) = f(e_2), \text{ then } e_1 = e_2. \quad ('event linearity')
\]

Idea: the occurrence of an event \(e \) in \(E \) induces the coincident occurrence of the event \(f(e) \) in \(E' \) whenever it is defined.
Process constructions on event structures

“Partial synchronous” product: $A \times B$ with projections Π_1 and Π_2, cf. CCS synchronized composition where all events of A can synchronize with all events of B. (Hard to construct directly so use e.g. stable families.)

Restriction: $E \upharpoonright R$, the restriction of an event structure E to a subset of events R, has events $E' = \{ e \in E \mid [e] \subseteq R \}$ with causal dependency and consistency restricted from E.

Synchronized compositions: restrictions of products $A \times B \upharpoonright R$, where R specifies the allowed synchronized and unsynchronized events.

Projection: Let E be an event structure. Let V be a subset of ‘visible’ events. The projection of E on V, $E\downarrow V$, has events V with causal dependency and consistency restricted from E.

[Event structures as types and processes? Spans]
Product—an example
Concurrent games

Basics

Games and strategies are represented by *event structures with polarity*. The two polarities $+$ and $-$ express the dichotomy:

- player/opponent;
- process/environment;
- ally/enemy.

An *event structure with polarity* is one in which all events carry a polarity $+/−$, respected by maps.

Dual, E^\perp, of an event structure with polarity E is a copy of the event structure E with a reversal of polarities; $\overline{e} \in E^\perp$ is complement of $e \in E$, and *vice versa*.

A (nondeterministic) concurrent *pre-strategy* in game A is a total map $\sigma : S \to A$ of event structures with polarity.
Pre-strategies

A pre-strategy $\sigma : A \leftrightarrow B$ is a total map of event structures with polarity

$$\sigma : S \rightarrow A^\perp \parallel B.$$

It determines a span of event structures with polarity

$$
\begin{array}{c}
\sigma_1 \quad S \\ \\
A^\perp & \sigma_2 \\ \\
& B
\end{array}
$$

where σ_1, σ_2 are partial maps of event structures with polarity; one and only one of σ_1, σ_2 is defined on each event of S.
Composing pre-strategies

Two pre-strategies $\sigma : A \rightarrow B$ and $\tau : B \rightarrow C$ as spans:

\[
\begin{array}{ccc}
A^\perp & \xrightarrow{\sigma_1} & S & \xrightarrow{\sigma_2} & B \\
& & & & \downarrow \tau_1 \\
& & & & B^\perp \xrightarrow{\tau_2} C
\end{array}
\]

Their composition

\[
\begin{array}{ccc}
A^\perp & \xrightarrow{(\tau \circ \sigma)_1} & T \circ S & \xrightarrow{(\tau \circ \sigma)_2} & C
\end{array}
\]

where $T \circ S =_{\text{def}} (S \times T \upharpoonright \text{Syn}) \downarrow \text{Vis}$ where ...
Their composition: $T \circ S = \text{def} \ (S \times T \upharpoonright \text{Syn}) \downarrow \text{Vis}$ where

\[
\text{Syn} = \{ p \in S \times T \mid \sigma_1 \Pi_1(p) \text{ is defined} \} \cup \{ p \in S \times T \mid \sigma_2 \Pi_1(p) = \tau_1 \Pi_2(p) \text{ with both defined} \} \cup \{ p \in S \times T \mid \tau_2 \Pi_2(p) \text{ is defined} \},
\]

\[
\text{Vis} = \{ p \in S \times T \upharpoonright \text{Syn} \mid \sigma_1 \Pi_1(p) \text{ is defined} \} \cup \{ p \in S \times T \upharpoonright \text{Syn} \mid \tau_2 \Pi_2(p) \text{ is defined} \}.
\]
Concurrent copy-cat

Identities on games A are given by copy-cat strategies $\gamma_A : \mathcal{CC}_A \to A_\perp \parallel A$ —strategies for player based on copying the latest moves made by opponent.

\mathcal{CC}_A has the same events, consistency and polarity as $A_\perp \parallel A$ but with causal dependency $\leq_{\mathcal{CC}_A}$ given as the transitive closure of the relation

$$\leq_{A_\perp \parallel A} \cup \{(\overline{c}, c) \mid c \in A_\perp \parallel A \& \text{pol}_{A_\perp \parallel A}(c) = +\}$$

where $\overline{c} \leftrightarrow c$ is the natural correspondence between A_\perp and A. The map γ is the identity on the common underlying set of events. Then,

$$x \in \mathcal{C}(\mathcal{CC}_A) \text{ iff } x \in \mathcal{C}(A_\perp \parallel A) \& \forall c \in x. \text{pol}_{A_\perp \parallel A}(c) = + \Rightarrow \overline{c} \in x.$$
Copy-cat—an example

\[\text{CC}_A \]

\[A \]

\[\overline{a}_2 \]

\[\overline{a}_1 \]

\[a_2 \]

\[a_1 \]
Theorem characterizing concurrent strategies

Receptivity $\sigma : S \rightarrow A^\perp \parallel B$ is receptive when $\sigma(x) \subseteq^- y$ implies there is a unique $x' \in C(S)$ such that $x \subseteq x'$ & $\sigma(x') = y$.

\[x \xrightarrow{\subseteq^-} x' \]
\[\sigma(x) \subseteq^- y \]

Innocence $\sigma : S \rightarrow A^\perp \parallel B$ is innocent when it is

+-Innocence: If $s \rightarrow s'$ & $\text{pol}(s) = +$ then $\sigma(s) \rightarrow \sigma(s')$ and

--Innocence: If $s \rightarrow s'$ & $\text{pol}(s') = -$ then $\sigma(s) \rightarrow \sigma(s')$.

[\rightarrow\text{ stands for immediate causal dependency}]

Theorem Receptivity and innocence are necessary and sufficient for copy-cat to act as identity w.r.t. composition: $\sigma \circ \gamma_A \cong \sigma$ and $\gamma_B \circ \sigma \cong \sigma$ for all $\sigma : A \rightarrow\leftarrow B$.
The bicategory of concurrent games

Definition A strategy is a receptive, innocent pre-strategy.

A bicategory, \textbf{Games}, whose

- **objects** are event structures with polarity—the games,
- **arrows** are strategies \(\sigma : A \leftrightarrow B \)
- **2-cells** are maps of spans.

The vertical composition of 2-cells is the usual composition of maps of spans. Horizontal composition is given by the composition of strategies \(\odot \) (which extends to a functor on 2-cells via the functoriality of synchronized composition).
Deterministic strategies

Say an event structures with polarity S is *deterministic* iff

$$
\forall X \subseteq_{\text{fin}} S. \text{Neg}[X] \in \text{Con}_S \Rightarrow X \in \text{Con}_S,
$$

where $\text{Neg}[X] = \text{def} \ \{ s' \in S \mid \exists s \in X. \text{pol}_S(s') = - \& s' \leq s \}$.

Say a strategy $\sigma : S \to A$ is deterministic if S is deterministic.

Proposition An event structure with polarity S is deterministic iff $s \rightarrow s'$ implies $x \cup \{ s, s' \} \in \mathcal{C}(S)$, for all $x \in \mathcal{C}(S)$.

Notation $x \rightarrow e \subseteq y$ iff $x \cup \{ e \} = y \& e \notin x$, for configurations x, y, event e.

$x \rightarrow e \subseteq$ iff $\exists y. x \rightarrow e \subseteq y$.
Nondeterministic copy-cats

(i) Take A to consist of two $+$ve events and one $-$ve event, with any two but not all three events consistent. The construction of \mathbb{C}_A:

\[
\begin{align*}
\emptyset & \rightarrow \emptyset \\
A^\perp & \emptyset \rightarrow \emptyset \ A \\
\emptyset & \leftarrow \emptyset
\end{align*}
\]

(ii) Take A to consist of two events, one $+$ve and one $-$ve event, inconsistent with each other. The construction \mathbb{C}_A:

\[
\begin{align*}
A^\perp & \emptyset \rightarrow \emptyset \ A \\
\emptyset & \leftarrow \emptyset
\end{align*}
\]
Lemma Let A be an event structure with polarity. The copy-cat strategy γ_A is deterministic iff A satisfies

$$\forall x \in C(A). \ x \xrightarrow{a} \subset \& \ x \xrightarrow{a'} \subset \& \ \text{pol}_A(a) = + \ & \text{pol}_A(a') = - \ \Rightarrow \ x \cup \{a, a'\} \in C(A). \quad (\exists)$$

Lemma The composition $\tau \circ \sigma$ of two deterministic strategies σ and τ is deterministic.

Proposition A deterministic strategy $\sigma : S \rightarrow A$ is injective on configurations (equivalently, $\sigma : S \twoheadrightarrow A$).

\leadsto sub-bicategory \mathbf{DGames}, equivalent to an order-enriched category.
Theorem A subfamily $F \subseteq \mathcal{C}(A)$ has the form $\sigma \mathcal{C}(S)$ for a deterministic strategy $\sigma : S \rightarrow A$, iff

reachability: $\emptyset \in F$ and if $x \in F$, $\emptyset \xrightarrow{a_1} x_1 \xrightarrow{a_2} \cdots \xrightarrow{a_k} x_k = x$ within F;

determinacy: If $x \xrightarrow{a} \subset$ and $x \xrightarrow{a'} \subset$ in F with $\text{pol}_A(a) = +$, then $x \cup \{a, a'\} \in F$;

receptivity: If $x \in F$ and $x \xrightarrow{a} \subset$ in $\mathcal{C}(A)$ and $\text{pol}_A(a) = -$, then $x \cup \{a\} \in F$;

$+\text{-innocence}$: If $x \xrightarrow{a} \subset x_1 \xrightarrow{a'} \subset$ & $\text{pol}_A(a) = +$ in F & $x \xrightarrow{a'} \subset$ in $\mathcal{C}(A)$, then $x \xrightarrow{a'} \subset$ in F (receptivity implies innocence);

cube: In F, $x \xrightarrow{a} \xleftarrow{e} y_1 \xrightarrow{b} \cdots$ implies

\[
\begin{array}{ccc}
x & \xrightarrow{a} & x_1 \xleftarrow{e} y_1 \xrightarrow{b} \cdots \\
& b & \xrightarrow{a} & y \xrightarrow{e} z \\
& b & \xrightarrow{a} & x_2 \xleftarrow{e} y_2 \xrightarrow{a} & \\
\end{array}
\quad
\begin{array}{ccc}
x & \xrightarrow{a} & x_1 \xleftarrow{e} y_1 \xrightarrow{b} \cdots \\
& e & \xrightarrow{a} & w \xrightarrow{b} z \\
& b & \xrightarrow{a} & x_2 \xleftarrow{e} y_2 \xrightarrow{a} & \\
\end{array}
\]
Related work—early results

Stable spans, profunctors and stable functions The sub-bicategory of Games where the events of games are purely $+ve$ is equivalent to the bicategory of stable spans:

![Diagram](image)

where S^+ is the projection of S to its $+ve$ events; σ_2^+ is the restriction of σ_2 to S^+ is rigid; σ_2^- is a demand map taking $x \in C(S^+)$ to $\sigma_2^-(x) = \sigma_1^+[x]$. Composition of stable spans coincides with composition of their associated profunctors.

When deterministic (and event structures are countable) we obtain a sub-bicategory equivalent to Berry’s **dl-domains and stable functions**.
Related work continued

Ingenuous strategies Deterministic concurrent strategies coincide with the *receptive ingenuous* strategies of and Melliès and Mimram.

Closure operators A deterministic strategy $\sigma: S \rightarrow A$ determines a closure operator φ on $C^\infty(S)$: for $x \in C^\infty(S)$,

$$\varphi(x) = x \cup \{ s \in S \mid pol(s) = + \& Neg\{s\} \subseteq x \}.$$

The closure operator φ on $C^\infty(S)$ induces a *partial* closure operator φ_p on $C^\infty(A)$ and in turn a closure operator φ_p^\top on $C^\infty(A)^\top$.

Simple games “Simple games” [Hyland *et al.*] arise when we restrict Games to objects and deterministic strategies in $\mathcal{PA}^-\#$ — alternating games, with conflicting branches, beginning with opponent moves.
Categories for games

Adjunctions

\[
\begin{array}{c}
\mathcal{PA}_r \overset{\top}{\longrightarrow} \mathcal{PF}_r \overset{\top}{\longrightarrow} \mathcal{PE}_r \overset{\top}{\longrightarrow} \mathcal{PE}_t \\
\mathcal{PA}_t^\# \overset{\top}{\longrightarrow} \mathcal{PA}_t^\# \overset{\top}{\longrightarrow} \mathcal{PF}_t^\#
\end{array}
\]

Conway games inhabit \(\mathcal{PF}_t^\# = \mathcal{PF}_r^\# \), a coreflective subcategory of \(\mathcal{PE}_t \). Conway’s ‘sum’ is obtained by applying the right adjoint to their \(\|\)-composition in \(\mathcal{PE}_t \).

‘Simple games’ belong to \(\mathcal{PA}_r^\# \), “polarized” games, starting with moves of Opponent. ‘Tensor’ of simple games got by applying the right adjoint of \(\mathcal{PA}_t^\# \hookrightarrow \mathcal{PE}_t \) to their \(\|\)-composition in \(\mathcal{PE}_t \).
Current problems:

Recovering games with copying. *E.g.*, can the (co)monads for Hyland-Ong games be got from (co)monads on $P\mathcal{E}_t$ with symmetry?

In special cases, strategies can be transformed s.t. composition of strategies can be expressed as the usual composition of spans. I don’t think this is so in general?
ERC Project:
The next-generation semantics involves causal models, also becoming important in a range of areas from security, systems, model checking, systems biology, to proof theory.

ECSYM: Events, Causality and Symmetry—the next-generation semantics

Objective 1 Intensional semantics: games; strong correspondence with operational semantics; metalanguage(s); higher-dimensional algebra; names

Objective 2 Event-based reasoning: event types; event induction; causal reasoning; program logics (“Reynolds’ conjecture” for conc. sepn. logic); names

Objective 3 Quantitative reasoning: probabilistic; stochastic; quantum(?)

Objective 4 Application methods: security; rule-based systems biology; distributed algorithms; extending SOS to causal models