
Inertia in Temporal Modification

Tim Fernando
Trinity College Dublin

1. Introduction

Inertia is enshrined in Newton’s first law of motion, a body at rest or in uniform
motion remains in that state unless a force is applied to it. Now, consider (1).

(1) Pat stopped the car before it hit the tree.

Can we conclude from (1) that the car struck the tree? Not without further
information such as that supplied in (2).

(2) But the bus behind kept going.

A post-condition for Pat stopping the car is that the car be at rest. To satisfy
a pre-condition for the car hitting the tree (namely, that the car not be at
rest), inertia requires that some intervening force act on the car (as hinted, for
example, by (2)). In the absence of such a force, (1) would appear to suggest
that Pat prevented a collision between car and tree.

Exactly what bit of physics are we importing into natural language
interpretation here? Oversimplified, Newton’s first law of motion says: no
change without force. Identifying force with cause, we come to the slogan no
temporality without cause, capturing in a phrase the proposal from Steedman
2000 that

temporal semantics of natural language is not primarily to do with
time at all. Instead, the formal devices we need are those related
to the representation of causality and goal-directed action.

Among the examples Steedman considers is the contrast illustrated in (3).

(3) a. Pat left Dublin but is back (in Dublin).

b. ?Pat has left Dublin but is back (in Dublin).

The acceptability of (3a) brings out, against the oddness of (3b), the need
for care if we are to build inertia into natural language interpretation. How
can (3a) allow Pat to be back in Dublin when (3b) cannot? An explanation
revolving around inertia is offered below. But first, some background.

Appeals to inertia can be traced back in artificial intelligence to the
notorious frame problem of McCarthy and Hayes 1969. Within the linguistic
semantics literature, references to inertia are made in Dowty 1979 and 1986 for
analyzing the progressive and multi-sentential discourse, respectively. These
strands of research in AI and linguistics are brought together in Steedman

2000, and developed further in Hamm and van Lambalgen 2003. The present
work is intended as a contribution to this general program, pushing, more
specifically, an approach to event semantics outlined in Fernando 2004. Under
this approach, “the formal devices” for “the representation of causality and
goal-directed action” are finite-state machines: event-types come out as regular
languages, and events as strings of observations. Some of these observations
are designated below to be inertial ,1 explaining, in the presence of further
assumptions,

(i) why certain uses of before are non-veridical

(ii) how to base temporal for and in modification on conjunctive modifica-
tion (as with simple Davidsonian cases of event modification)

(iii) why states tend to persist/overlap in a way that events do not

(iv) how a Reichenbachian analysis of the perfect yields existential and re-
sultative readings

(v) incremental change associated, for instance, with the progressive.

2. Event-types as regular languages

Let us begin with an example. The regular expression (4) for the un-inflected
(tense-less) phrase rain for two days provides strings

rain, 0(τ) rain
n

rain, 2days(τ)

of length n+2 (for n ≥ 1), the first symbol in which records rain at time τ , the
last symbol, rain 2 days after τ , and the n middle symbols, rain in between.

(4) rain, 0(τ) rain
+

rain, 2days(τ)

The formulas rain, 0(τ) and 2days(τ) are examples of fluents , assumed to con-
stitute a finite set Φ ⊇ {rain, 0(τ), 2days(τ)}. The alphabet from which regular
languages are formed is the power set Pow(Φ) consisting of subsets of Φ. The
basic intuition is that a string α1α2 · · ·αk ∈ Pow(Φ)∗ describes a temporal
sequence of observations, with every fluent in αi asserted to hold at the ith
point of the sequence. That is, α1α2 · · ·αk amounts to a comic strip or movie
beginning with the still picture α1, followed by α2 and so on, ending with αk.

2

This view is reinforced by adopting the box notation of DRT (Kamp and Reyle
1993), in combination with the notation of regular expressions (in particular,
conflating a string s with the singleton language {s}). Arbitrarily long (but
finite) strings are included in (4) to convey the impression of un-interrupted
rain over two days (much the same way a movie can give the illusion of contin-
uous motion by flashing a large enough number of stills within a fixed time).

The longer the string we choose from (4), the more convincing a depiction
we have of continuous rain over two days (up to arguably a sufficiently big
number, beyond which increasing the length has no discernible effect).

Can we make this Mickey mouse (event-as-comic strip) account more
precise? For a model-theoretic interpretation, let us fix a set Ti of times with
a successor relation succ ⊆ Ti × Ti, and define a (succ-)run to be a string
t1t2 · · · tk ∈ Ti∗ such that succ(ti, ti+1) for 1 ≤ i < k. Now, the idea is that
relative to a model M that interprets rain as a subset rainM ⊆ Ti, the string

rain, 0(τ) rain
n

rain, 2days(τ) denotes the set of runs t0 · · · tn+1 such that

(i) rainM(t0) and 0M(τM , t0)

(ii) rainM(ti) for 1 ≤ i ≤ n

(iii) rainM(tn+1) and 2daysM(τM , tn+1)

with intended interpretations

0M(t, t′) iff t = t′

2daysM(t, t′) iff t′ is two days after t.

(That is, I(τ) says I time has elapsed since τ , so that in particular, 0(τ)
marks the time of the still as τ). In general, to interpret a string in Pow(Φ)∗,
we must assume that each fluent ϕ ∈ Φ can be translated to a formula ϕ̂[x]
over a variable x. Then, given a model M containing Ti and interpretations
of the translations ϕ̂[x], an M -run of a string α1 · · ·αk ∈ Pow(Φ)∗ is a run
t1 · · · tk such that

M |= ϕ̂[ti] for 1 ≤ i ≤ k and ϕ ∈ αi .
Stepping from a string (event) to a language (event-type), we can accom-
modate different choices of succ reflecting temporal granularity (the finer the
granularity, the longer a run must be of two days).3

Models aside, how do we get from rain for two days to (4)? Suppose
we were to associate the regular expression (5) with two days .

(5) 0(τ) �+ 2days(τ)

To build (5) up to (4), let the superposition L&L′ of languages L,L′ ⊆ Pow(Φ)∗

combine strings from L and L′ of equal length, forming the componentwise
union αi ∪ α′i of symbols

L&L′ =
⋃
n≥1

{(α1 ∪ α′1) · · · (αn ∪ α′n) | α1 · · ·αn ∈ L and α′1 · · ·α′n ∈ L′} .

Each of αi and α′i is understood to be a partial snapshot at some ith time,
so that the effect of & is to overlay motion pictures with the same length.

& is a natural form of conjunction (that is, in particular, commutative and
associative), mapping regular languages to regular languages (Fernando 2004).
We can now construct (4) from (5) as in (6).

(6) rain, 0(τ) rain
+

rain, 2days(τ) = rain
+

& 0(τ) �+ 2days(τ)

We shall return to (6) below. For now, note that we can apply super-

position & quite freely to combine say, a language b ∼b
+

that marks the
initial symbols of its strings (by b) with another language ∼e + e that marks
the final symbols of its strings (by e).

(7) b ∼b
+

& ∼e + e = b,∼e ∼b,∼e
∗ ∼b, e

For example, to analyze the phrase Pat eat an apple, let the beginning b be
∼ (∃x v a) eat(p,x) (where x v a says x is a non-null part of a), and the end
e be eat(p,a).4

Complementing superposition is a form of explicit entailment called
subsumption �, defined on languages L and L′ by

L� L′ iff L ⊆ L&L′ .

Equating s � s′ with {s}� {s′}, it follows that over strings,

α1 · · ·αk � α′1 · · ·α′n iff k = n and αi ⊇ α′i for 1 ≤ i ≤ k

while over languages,

L� L′ iff (∀s ∈ L)(∃s′ ∈ L′) s � s′ .

Note that (4) � (5), and that, in general, L&L′ � L. Moreover, � is
reflexive and transitive with ∅�L��∗. And returning to the model-theoretic
interpretation of strings above, L�L′ implies that every M -run of a string in
L is an M -run of a string in L′.

3. Inertia over strings

Let us call ϕ a post-condition of L if L � �∗ ϕ — that is, every string in L
ends with ϕ. It is a pre-condition of L if every string in L begins with it:
L � ϕ �∗. Returning to sentence (1), let us assume that still-car is a post-
condition of the language for the un-inflected phrase Pat stop car , while the
negation ∼still-car is a pre-condition of the language for car hit tree. Now,
does (1) carry the information that the car hit the tree? A positive answer to
this question must square with the fact that the language for the un-inflected
phrase (8) must �-subsume (9).

(8) Pat-stop-the-car and-then car-hit-tree.

(9) �∗ still-car �∗ ∼still-car �∗

The transition from still-car to ∼still-car in (9) must be accounted for if (1) is
to be read as (8). This account may be supplied by the context in which (1) is
uttered, or it may even be uttered after (1), as in (2). Otherwise, it is natural
to read (1) non-veridically as asserting that the car did not hit the tree.

The argument above assumes that still-car or ∼still-car is inertial, by
which we mean that whenever it holds, it persists into the future or back
from the past unless some force acts on it. More precisely, let us fix a subset
Inr ⊆ Φ of inertial fluents, and associate with each ϕ ∈ Inr a non-inertial fluent
Fϕ ∈ Φ − Inr saying: a force is applied on ϕ. Bearing this in mind, we may
assume (for the sake of simplicity) that Fϕ is the same as F(∼ϕ). To illustrate

with a ϕ ∈ Inr, inertia turns the string � ϕ � to ϕ ϕ ϕ , and Fϕ ϕ � to

Fϕ ϕ ϕ , but for ψ 6= ϕ, Fψ ϕ � to Fψ, ϕ ϕ ϕ . Broken down into single

steps, inertia maps a language L ⊆ Pow(Φ)∗ to the language

i(L) =
⋃

sαα′s′∈L [{sα(α′ ∪ ϕ)s′ | ϕ ∈ α ∩ Inr, Fϕ 6∈ α} ∪
{s(α ∪ ϕ)α′s′ | ϕ ∈ α′ ∩ Inr, Fϕ 6∈ α}]

given by the inertial laws (10) and (11).

(10)
sαα′s′

sα(α′ ∪ ϕ)s′
ϕ ∈ Inr ∩ α, Fϕ 6∈ α

(11)
sαα′s′

s(α ∪ ϕ)α′s′
ϕ ∈ Inr ∩ α′, Fϕ 6∈ α

Notice that i(L) � L and that i distributes over L: i(L) =
⋃

s∈L i({s}).
Let us call a string s inertially complete (ic) if inertia adds nothing to

s in that i({s}) ⊆ {s}. (We allow i({s}) = ∅ in case every occurrence in s of
an inertial fluent ϕ is accompanied by Fϕ.) ϕ n is an example of an ic string;

ϕ � is not (for ϕ ∈ Inr). A language is ic if every string in it is.5 For example,

ϕ + is ic but not �∗ ϕ �∗ or �∗ ϕ ∗�∗. To understand what it takes for a
language to be ic, we shall design an operation ic on languages L such that

(a) ic(L) is ic

and

(b) L is ic iff L = ic(L).

Towards that end, let us apply i repeatedly on L, starting with i0(L) = L,
moving on for n ≥ 0 to

in+1(L) = i(in(L))

and collecting the results in

iω(L) =
⋃
n≥0

in(L) .

For example, in(�∗ ϕ �∗) = �∗ ϕ n+1�∗ and iω(�∗ ϕ �∗) = �∗ ϕ +�∗. Now,
the inertial completion of L is the ic fragment of its finitary iterations

ic(L) = {s ∈ iω(L) | s is ic} .
For example, ic(�∗ ϕ �∗) = ϕ +. Clearly, (a) and (b) above hold, and ic(L) =⋃

s∈L ic({s}) � L. Less obvious perhaps is

Theorem 1. If L is regular then so is ic(L).

The remainder of this section, which the reader may choose to skip, is a proof
of this theorem. It is not difficult to see that

ic(L) = i→c(i←c(L)) = i←c(i→c(L))

where i→(L) is ic(L) with i restricted to the forward rule (10), and similarly
for i←c(L) and the backward rule (11). Given a finite automaton accepting L,
with states Q, initial state q0, final states F and transitions →, we may form
one for i→c(L) with

(i) states Q× Pow(Inr)

(ii) initial state (q0, ∅)
(iii) set F × Pow(Inr) of final states

(iv) transitions (q, γ)
β
; (q′, γ′) iff for some α,

q
α→ q′, β = α ∪ γ, and γ′ = ϕ ∈ β ∩ Inr | Fϕ 6∈ α .

For the inference rule (11), take

(i) states {q0} ∪ (Q× Pow(Inr))

(ii) initial state q0

(iii) set F × {∅} of final states

(iv) transitions

(q, γ)
β
; (q′, γ′) iff (∃α) q

α→ q′, γ′ = β − α and

α ∪ γ ⊆ β ⊆ α ∪ ϕ ∈ Inr | Fϕ 6∈ α
with no ;-transition into q0, but

q0
β
; (q′, γ′) iff (∃γ ⊆ Inr) (q0, γ)

β
; (q′, γ′)

i.e. q0
ε

; (q0, γ) for γ ∈ Inr.

Applying these transformations in sequence on an automaton accepting L
yields an automaton accepting ic(L).

4. Regulating inertial flow

Why are inertial completions interesting? Because they provide a simple way
of introducing inertia to natural language interpretation. For the record,

Inertial Hypothesis (IH). The languages interpreting temporal phrases are
inertially complete.

Armed with IH, we can derive the analysis (6) of rain for two days from (12)
for ϕ ∈ Inr and I as in (5), with 0(τ), 2days(τ) 6∈ Inr.

(12) for(ϕ, I) = ic(�∗ ϕ �∗ & I)

Generalizing the language ϕ + to which (12) coerces �∗ ϕ �∗, let us define L

to be stative if ic(�∗L�∗) = L. It follows that

L is stative iff L is ic, ic(�∗L) ⊆ L and ic(L�∗) ⊆ L .

The last two conjuncts formalize the persistence of L backwards (�∗L) and
forwards (L�∗). In addition to ϕ +, we have for every α ⊆ Φ, the stative

language α◦∗α(α•∗) where α◦ = α∩ Inr consists of all inertial fluents in α, and
α• is the set

α• = α◦ − ϕ | Fϕ ∈ α

of fluents in α◦ on which no force is applied in α.
But how do we reconcile IH with a transition ∼ϕ ϕ ? There is no

denying that for ϕ ∈ Inr,

ic(∼ϕ ϕ) = ∼ϕ, ϕ ∼ϕ, ϕ

whch we had better avoid if we want only strings with M -runs. While ic is
⊆-monotone in that

L ⊆ L′ implies ic(L) ⊆ ic(L′),

it is not �-monotone:

L� L′ need not imply ic(L) � ic(L′) .

The side condition “Fϕ 6∈ α” in (10) and (11) suggests reading Fϕ as “freeze
ϕ” (neutralizing inertia). Let us collect F-fluents Fϕ in

ΦF = {Fϕ | ϕ ∈ Inr}

and define an erasure operation ·−F that deletes F-fluents from strings

(α1 · · ·αn)−F = (α1 − ΦF) · · · (αn − ΦF)

and from languages

L−F = {s−F | s ∈ L} .
Notice that

(Fϕ,∼ϕ ϕ)−F = ∼ϕ ϕ

recalling that Fϕ = F(∼ϕ). IH compels us to account for transitions ∼ϕ ϕ
by introducing F-fluents that block inertial flow. More precisely, let us say
that L′ accounts for L if

L = (ic(L&L′))−F.

For example, Fϕ � accounts for ∼ϕ ϕ . In general, if we set [F(L)] to apply
a force on every inertial fluent occurring in L

[F(L)] = Fϕ | ϕ ∈ Inr and (∃s ∈ L) s ��∗ ϕ �∗ ,

then [F(L)]∗� accounts for L−F. We can refine this account as follows. Call
L′ a minimal inertial cover of L if L′ is ic, L′−F = L−F and for every L̂ such
that (ic(L̂))−F = L−F, ic(L̂) � L′.

Theorem 2. If L is regular, then L has a minimal inertial cover that is
regular.

We omit the proof (constructing finite automata), in the interest of space.6

Theorem 2 would appear to make IH less an empirical claim and more
a methodological assumption. Indeed, minimal inertial cover or not, IH would
be vacuous if the effects of inertia were always covered up. Returning to

languages b, ∼e ∼b, ∼e
∗ ∼b, e marked by a beginning b and end e, we

can decompose the superposition in (7) as (13), henceforth agreeing that ϕF

abbreviates ‘ϕ,Fϕ.’

(13) b, ∼e ∼b, ∼e
∗ ∼b, e = ic(bF ∼b �∗ & �∗ (∼e)F e)−F

(13) applies inertia forwards

b ∼b
+

= ic(bF ∼b �∗)−F

and backwards

∼e + e = ic(�∗ (∼e)F e)−F.

We shall return to (13) in section 6 below.
Turning to temporal in-modification, a first attempt is to adapt (12)

to (14) with a transition (∼ϕ)F ϕ . (For a concrete example, let ϕ be rain,

and apply (14) to rain in two days .)

(14) in(ϕ, I) ≈ ic(�∗ (∼ϕ)F ϕ �∗ & I)

Note that

ic(�∗ (∼ϕ)F ϕ �∗ & I) = ∼ϕ + (∼ϕ)F ϕ + & I

(provided none of the fluents in I are in Inr or ΦF). The backward persistence
of ∼ ϕ is fine, but the forward persistence of ϕ is arguably not faithful to
the meaning of in. There is a telic7 requirement in in that we can implement
via truncation. More precisely, given ϕ ∈ Φ, let us call a string α1 · · ·αn
ϕ-truncated if for all i ∈ {1, . . . n},

ϕ ∈ αi implies i = n .

A language is ϕ-truncated if every string in it is. Let sϕ be the longest prefix
of s that is ϕ-truncated, and let Lϕ consist of the ϕ-truncations of strings in L

Lϕ = {sϕ | s ∈ L} .

Clearly, (a) Lϕ is ϕ-truncated, (b) L is ϕ-truncated iff L = Lϕ, and (c) Lϕ is
regular if L is. We can now sharpen (14) to (15).

(15) in(ϕ, I) = ic(�∗ (∼ϕ)F ϕ �∗ & I)ϕ

And, for good measure, let us refine the language (5) for two days to (16)�(5).

(16) 0(τ) <2days(τ)
+

2days(τ)

It follows that

in(ϕ, (16)) = ∼ϕ ∗ (∼ϕ)F ϕ & ((16) + 0(τ) <2days(τ)
+

)

and in general, ϕ in I is read as ϕ in ≤I . One of the differences between
for/(12) and in/(15) has to do with durativity. Let us call L durative if L�

���+ — i.e., if all strings in L have length ≥ 3 (ensuring distinct beginnings,
middles and ends). Now, if I is durative, then so too is for(ϕ, I). Not so
with in(ϕ, I), thanks to truncation. Of course, it is easy enough to &-conjoin
in(ϕ, I) with ���+ to get a durative language. But that language may well
be empty, if all strings in in(ϕ, I) have length < 3 — a case worth marking
out as odd. More in section 6.

5. Reichenbach’s E, R and S

Now for the pair in (3). Assuming for simplicity the un-inflected phrase Pat
leave Dublin were given the regular language in (17),8 what moral can we draw
from (3)?

(17) in(p,d)F ∼in(p,d)

A simple analysis of the past tense via a speech time S would associate (18)
with PAST(Pat leave Dublin), given (17).

(18) in(p,d)F ∼in(p,d) �∗ S

Clearly, reducing both Pat left Dublin and Pat has left Dublin to (18) will not
yield the contrast in (3). Beyond tense, there is also aspect to consider —
which we do so, following Reichenbach.9

More specifically, aspect falls out of a comparison of a reference time
R to an event time E as follows.

Simple. R = E

Progressive. R @ E (R is surrounded by E)

Perfect. R > E (R comes after E)

In the present setting, let us replace E by a language L, and treat R as a
non-inertial fluent that marks a position in L

Simp(L,R) = L & �∗ R
Prog(L,R) = L & �+ R �+

Perf◦(L,R) = L�∗ R .

For example,

Simp(rain
+
, R) = rain

∗
rain, R

Prog(rain
+
, R) = rain

+
rain, R rain

+

Perf◦(rain
+
, R) = rain

+�∗ R .

Were we to think of R as tracking the stage in a computation of L, the idea
is that

- in the case of Simp(L,R), L has reached completion

- in the case of Prog(L,R), L has not quite gotten there but is on its
way

- in the case of Perf◦(L,R), L is history.

Why the subscript ◦ on Perf◦ above? If L is ic, so are Simp(L,R) and
Prog(L,R). But not necessarily Perf◦(L,R). To understand the inertial
complications this raises, it is useful to bring in tense, assuming as with R

that S ∈ Φ − Inr. Suppose L is a language that an aspectual operator has
R-marked. The present tense locates S at R

Pres(L, S) = (L & �∗ R,S �∗) ∩ 1(R)

where 1(R) consists of all strings in Pow(Φ)∗ in which R occurs exactly once

1(R) = Pow(Φ− {R})∗ Pow(Φ) Pow(Φ− {R})∗ .
The past tense puts S after R

Past◦(L, S) = (L�∗ & �∗ R �∗ S �∗) ∩ 1(R) ∩ unpad

where intersection with unpad truncates leading and trailing �’s

unpad = � + (Pow(Φ)− {�})+Pow(Φ)(Pow(Φ)− {�})+ .

As with Perf◦, we attach a subscript ◦ on Past◦ to signal unresolved inertial
issues.

Returning to Pat left Dublin versus Pat has left Dublin, suppose we
were to analyze these as in (19) and (20), respectively.

(19) Past◦(Simp((17), R), S) = in(p,d)F ∼in(p,d), R �∗ S

(20) Pres(Perf◦((17), R), S) = in(p,d)F ∼in(p,d) �∗ R, S

Now, the acceptability of (3a) suggests that (19) is fine, which is to say that
we do not want inertial flow beyond R. By contrast, the oddness of (3b) would
be explicable were the post-condition ∼in(p,d) in (17) to flow inertially into
R, as in the inertial closure (21) of (20).

(21) in(p,d)F ∼in(p,d) ∼in(p,d)
∗ ∼in(p,d), R, S

Inertial flow in (21) presents no problem for IH; we simply adopt (22).

(22) Perf(L,R) = ic(Perf◦(L,R))

The lack of inertial flow in (19), however, needs to be reconciled with IH. With
this in mind, let us call L frozen if for all sα ∈ L and ϕ ∈ α ∩ Inr, Fϕ ∈ α.
Next, we define L• so that (a) L• is frozen, and (b) L is frozen iff L = L•.
This is easy: let L• = {s• | s ∈ L} with ε• = ε and

(sα)• = s(α ∪ Fϕ | ϕ ∈ α ∩ Inr) .

(Note that if L is regular, then so is L•.) Now, to freeze inertia in (19), let us
agree to set

Past(L, S) = Past◦(L•, S)

which is to say: all inertial flow must precede the application of tense.10

As it turns out, there are cases where we should form L• before applying
(22). Consider the present perfect it has rained. (23) gives two possibilities.

(23) a. Pres(Perf◦(rain
+
, R), S) = rain

+�∗ R,S

b. Pres(ic(Perf◦(rain
+
, R)), S) = rain

+
rain, R, S

If we do not want to infer rain at S from it has rained , we had better opt for
(23a), rather than (23b). Indeed, revisiting (3), one may argue that (3b) is
acceptable as a reply to the question

Has Pat ever left Dublin?

It would appear that ever questions license so-called existential readings.
Under IH, the difference between an existential and a resultative perfect is
whether we freeze L or not (by adding, in the case of (17), F(∼in(p,d)) to the
end). An alternative to (22) is (24).

(24) Perf(L,R) = Perf◦(L•, R) [∃, contra (22)]

If L is ic, then so is Perf◦(L•, R)

Perf◦(L•, R) = ic(Perf◦(L•, R))

which is to say we can derive (24) from (22) by first freezing L.

6. Incremental (graded) change

Two questions about the account of aspect above are

(Q1) How are we to capture the progressive of Pat leave Dublin when

Prog(L,R) = ∅ if L has no strings of length ≥ 3

as is the case with the language (17) for Pat leave Dublin?

(Q2) Can we account for the widespread view (e.g. Kamp and Reyle 1993)
that the progressive and the perfect are stative?

Recall that a language L is durative if all strings in L have length ≥ 3. Let
us call L&���+ the durative coercion of L, noting that (a) L&���+ is
durative, and (b) L is durative iff L = L&���+. For similar reasons, let us
call L&�� the 2-point coercion of L. From (Q1), it is clear that we need
to beef (17) up to a language L̂ whose (a) 2-point coercion �-subsumes (17)
and (b) durative coercion is non-empty. With that in mind, let us collect L’s
preconditions in

αL = ϕ | L� ϕ �∗

and L’s post-conditions in

ωL = ϕ | L��∗ ϕ

and observe that

L & �� � αLωL

L & ���+ � αLδL
+ωL

where δL consists of L’s internal/intermediate invariants

δL = ϕ | L&���+ �� ϕ +� .

Notice that δL is a good candidate for the progressive in (Q2).11

Next, recall our analyses (5) and (16) of two days . In both cases,

αL = 0(τ) and ωL = 2days(τ) . But δL is � in (5), and <2days(τ) in (16).

To capture the passage of time within the interval, let us introduce a modifier
Previously on fluents ϕ that shifts the evaluation time of ϕ one step back

(Previously ϕ)M(t) iff (∃t′) succ(t′, t) and ϕM(t′)

where M is a model containing the successor relation succ on time (interpreting
fluents according to section 2). Now, we can refine δL to consist of the fluent

(∃t < 2days) time(t, τ) ∧ (∃t′ < t) Previously time(t′, τ)

where time(2days,τ) and time(0, τ) re-formulate 2days(τ) and 0(τ), respectively.
(For control on the increments, we can strengthen t′ < t to t′ < t− ε, for some
parameter ε > 0.)

Turning to examples where δL can be construed as the progressive, let
us consider the informal picture below of a durative event e.

progressi c
| |

f : 0 1
Figure 1

The upper half of Figure 1 follows Moens and Steedman 1988 in representing
e by an inceptive event i, a culminative event c, and a progressive state which
is both the consequent state of i and the preparatory state of c. The lower
half hints at a conceptualization of e in terms of the closed unit interval [0, 1]
(consisting of real numbers from 0 to 1) with the help of a suitable function f
that maps x ∈ [0, 1] to a fluent f(x) tracking e up to its xth part (where the
xth part of e is i for x = 0, and all of e for x = 1). Some examples are given
in Table 1.

f(x) for 0 ≤ x ≤ 1
Pat swim a mile ‘Pat swim x·[a mile]’
Pat grow an inch ‘Pat grow x·[an inch]’
Pat drink four pints ‘Pat drink x·[four pints]’
Pat drive a car 50 kms ‘Pat drive a car x·[50 kms]’
rain for six hours ‘rain for x·[six hours]’

Table 1

The fluent f(1
2
) corresponds in the first row (Pat swim a mile), to Pat swim

half a mile,12 and in the last row, to rain for three hours . The items underlined
in the left column measure out the event e (in roughly the sense of Tenny 1987),
supplying the xth parts that the right column uses to define f(x). (We switch
from e to these items because we presumably understand these items better
than we do e.)

Recalling line (7) from section 2, we have f(0) = b and f(1) = e. But
what about f(x) for 0 < x < 1?13 Quantifying away that x, let f↑ be the fluent

(∃x < 1) f(x) ∧ (∃y < x) Previously f(y)

that says e is progressing. Accordingly, we can associate regular languages
with i, c and progress in Figure 1

Li = Ff↑, f(0)F f↑

Lc = f↑
F, Ff(1) f(1)

L(progress) = f↑
+

where f(0), f(1) and f↑ are understood to be inertial. The vertical bars
below i and c in Figure 1 mark forces shaping the combination of Li,Lc and
L(progress) according to Figure 1

ic(Li�+ & �+Lc) = ic(Li�+ & �L(progress)︸ ︷︷ ︸� & �+Lc)
state

= Ff↑, f(0)F f↑
∗
f↑

F, Ff(1) f(1)

= Ff↑, f(0)F f↑
+

︸ ︷︷ ︸
� & �+ f↑

F, Ff(1) f(1)
︸ ︷︷ ︸

activity achievement .

The last line above has the form

activity CAUSE achievement

which accomplishments take in Dowty 1979, with CAUSE reformulated as &-
conjunction against an inertial background. The specific case of rain for six
hours (the last row of Table 1) suggests sharpening (12) so as not to assert
rain at the start or end.

(25) for(ϕ, I) = ic(Fϕ (ϕ �∗ + ε) ϕF � & I)

= Fϕ ϕ ∗ ϕF � & I

(25) treats rain more as an activity than a state — which is not surprising
given that the progressive of a state can, as is well-known, be awkward. (25)
stays away from the fluent f↑,14 as we need not restrict ourselves to the f↑-
analysis above of Figure 1. For instance, we can associate with Pat bake a
cake the language

Fbake(p,x), ∼cake(x) bake(p,x), ∼cake(x)
∗

bake(p,x)F,∼cake(x)F cake(x)

and with Pat walk home

Fwalk(p), ∼home(p) walk(p), ∼home(p)
∗

walk(p)F, ∼home(p)F home(p)

(refining both languages, if we wish, by applying f↑ to the degree to which, in
the former case, x is a cake, and, in the latter, Pat is near home).

Like (17), Li and Lc have no strings of length ≥ 3, making Prog(Li, R)
and Prog(Lc, R) empty and hence problematic. We are back to (Q1). As with
(17), Li and Lc are 2-point coercions of languages L(i) and L(c) from which
to form Prog(L(i), R) and Prog(L(c), R). Exactly what L(i) and L(c) are,
I cannot say. Nor do I have a definite answer for the case of (17), which I
am inclined to think involves Pat’s intentions. That said, I hope this section
encourages the reader to explore such questions within the present setting. The
trick would be to find the right fluents. With (Q2) in mind, let us mention
two well-known binary connectives on fluents that may prove useful: since

(ϕ since ψ)M(t) iff (∃k ≥ 2)(∃ run t1 · · · tk) tk = t, ψM(t1) and

ϕM(ti) for 1 < i ≤ k

and until

(ϕ until ψ)M(t) iff (∃k ≥ 2)(∃ run t1 · · · tk) t1 = t, ψM(tk) and

ϕM(ti) for 1 ≤ i < k .

These connectives introduce fluents that take snapshots of even more instants
than Previously. Indeed, we might try the regular language

ψ ϕ ∗ ϕ,R

before resorting to ϕ since ψ (qua fluent),15 and the reversal

ϕ,R ϕ ∗ ψ

before ϕ until ψ. As with anything, since and until must be used with some
restraint. In the present context, they suggest candidates for δL of the form

ϕ since b, ϕ until e

from which to construct the progressive state δL
+. For the perfect, we might

try a state of the form ϕ since ψ
+

, relying on inertia to infer from ϕ that ϕ
until Previously Fϕ.

7. Conclusion

Let us return briefly to items (i)-(v) ending the Introduction.

(i) To read (1) as (8), we must, under IH, account for the transition from
still-car to ∼still-car in (9). More generally, to read A before B as A
and then B , any conflict between the post-conditions of A and the pre-
conditions of B must be accounted for by an intervening force.

(ii) Against an inertial background, we can base an interpretation of ϕ for
I on �∗ ϕ �∗ & I, subject to boundary conditions ((12) versus (25))
specifying forces around I. For ϕ in I, we put a force immediately before

ϕ , alongside ∼ϕ, and secure telicity by ϕ-truncating �∗ (∼ϕ)F ϕ �∗
before or after superposition with I. The latter case yields a reading of
in I as in I or less . The former does not (see Endnote 7).

(iii) Call L stative if L = ic(�∗L�∗).

(iv) Apply (22) — in the case of an existential reading, after freezing L.

(v) Form fluents that relate multiple instants (via Previously, since, etc),
noting that inertia covers not just rest but also uniform motion (arguably
reflecting the progressive).

Among the many questions left open are two which I hope to answer elsewhere:
how, within the present approach, to interpret (i) non-veridical readings of
before, and (ii) the force construct F on fluents.

Endnotes

∗My thanks to Cleo Condoravdi and Stefan Kaufmann for helpful discussions.
1That is, the designation “inertial” is applied not to worlds (as in Dowty 1979,
where certain worlds are taken to be inertial relative to a time and world) but
to observations, formalized below as fluents which are then strung together
and collected in regular languages.
2That is, an event is conceptualized as a sequence of snapshots, as in Tenny
1987 — a conceptualization vigorously rejected in Jackendoff 1996. In defense,
I work not just with strings but with languages (that I take some pains to check
are regular). In section 6, we shall see how the continuity that Jackendoff
values can arise as the limit of finitary approximations from these languages.
Short of that limit, issues of granularity and vagueness in natural language
arguably call for the use of such approximations.

I have insisted on regular languages because in the present context, less
is more: not only is computational complexity kept (by some measure) modest,
but the finite-state machines constitute Kripke models for modal languages
worth investigating.

3The step to a language also allows us to express, for a fixed choice of succ,
disjunctions useful in (a) translating say, the Priorean formula Past(rain) into

the regular expression rain �∗ S with speech time S, and in (b) negating say,

ϕ, ψ to get ∼ϕ + ∼ψ .

4Readers familiar with Vendler classes will observe the decomposition here of

an accomplishement into an activity b ∼b
+

and an achievement ∼e + e .
More in section 6.

5Thus, a string s is ic iff the language {s} is. While the inclusion i(L) ⊆ L is
necessary for L to be ic, it is not sufficient. (Take L = �∗ ϕ +�∗.)
6The idea, briefly, is to work with states (q, γ+, γ−, γ0) that record in γ+ the
inertial fluents that will only appear in the next position, in γ− the inertial
fluents that will disappear from the next position, and in γ0 the inertial fluents
that persist.

7Fernando 2004 defines L to be ϕ-telic if L� ∼ ϕ ∗ ϕ , and provides a stricter
analysis of in-modification than that presented here, effectively truncating
before &-superposing with I for

in(ϕ, I) = ic(�∗ (∼ϕ)F ϕ & I) = ∼ϕ ∗ (∼ϕ)F ϕ & I .

8This simplification, which will do for the discussion of (3) in section 5, is
dropped in section 6.

9Section 5 draws heavily from Fernando 2003, improving the treatment there of
inertia. The reader interested in a discussion of Dowty’s imperfective paradox
within the present setting is referred to that paper.

10A weaker alternative to L• is to freeze at R. But consider it was raining and

its skeleton Past◦(Prog(rain
+
, R), S),

rain
+

rain, R rain
∗
(rain, S + rain �∗ S) .

Applying ·• to Prog(rain
+
, R) would block the inference of rain at S (from

it was raining), whereas freezing only at R would not.

11We can improve the approximation L & ���αLωL if we replace αL and ωL
by αL&�� and ωL&�� respectively. Similarly for L & ���+.

12Insofar as the same mile may be swam repeatedly, giving different events,
we ought really to be careful to add a temporal parameter τ to sharpen say,
swim(p,m) to swimStartingAt(p,m,τ). The different events can then be distin-
guished by different instantiations of τ .

13Jackendoff 1996 rejects conceptualizing events as comics “on the grounds
that it misrepresents the essential continuity of events of motion” [page 316].

The horizontal line drawn in Figure 1 is presumably continuous, whereas our
strings are discrete. But we can collect strings in sets that fill in as many of
the points in that line as we would ever care to fill. And we can abstract over
the fluents f(x) to form one, f↑, capturing incremental change — although
admittedly the modifier Previously leads to fluents that go beyond snapshots
of single time points. Be that as it may, who is to say that the usual discrete
picture of computation proceeding step-by-step is any less compelling than the
illusion of continuity that motion pictures (if not comic strips) engender?

14In this case, the use of Previously may unnecessarily invite objections that
our fluents record more than single snapshots.

15Replacing ϕ in the language ψ ϕ ∗ ϕ,R by 0 �∗ 1 yields (under superpo-

sition) a language that no finite state machine can accept. (Apply a pumping

argument after intersecting with ψ 0
∗

0,R 1
∗
.) Regularity has some bite

even in the present context.

References

David Dowty. Word Meaning and Montague Grammar . Reidel, Dordrecht,
1979.

David Dowty. The effects of aspectual class on the temporal structure of
discourse: semantics or pragmatics? Linguistics and Philosophy 9:
37–61, 1986.

Tim Fernando. Reichenbach’s E, R and S in a finite-state setting. Sinn und
Bedeutung 8, Frankfurt, 2003.

Tim Fernando. A finite-state approach to events in natural language seman-
tics. Journal of Logic and Computation 14(1):79–92, 2004.

F. Hamm and M. van Lambalgen. Event Calculus, Nominalisation, and the
Progressive. Linguistics and Philosophy 26(4):381–458, 2003.

Ray Jackendoff. The proper treatment of measuring out, telicity, and perhaps
even quantification in English. Natural Language and Linguistic Theory
14:305–354, 1996.

H. Kamp and U. Reyle. From Discourse to Logic. Kluwer, Dordrecht, 1993.

J. McCarthy and P. Hayes. Some philosophical problems from the standpoint
of artificial intelligence. In M. Meltzer and D. Michie (eds.), Machine
Intelligence 4:463–502. Edinburgh University Press, 1969.

M. Moens and M. Steedman. Temporal ontology and temporal reference.
Computational Linguistics 14(2):15–28, 1988.

Mark Steedman. The Productions of Time. Draft, ftp://ftp.cogsci.ed.
ac.uk/pub/steedman/temporality/temporality.ps.gz, July 2000.

Carol Tenny. Grammaticalizing Aspect and Affectedness . PhD dissertation,
Department of Linguistics and Philosophy, MIT, Cambridge, MA, 1987.

