Situations in and out of relations

Tim.Fernando@tcd.ie
Westport, July 2010

Carnap-Montague intension of a formula φ

$$\llbracket \varphi \rrbracket_{i_1...i_n} = \begin{cases} 1 & \text{if } i_1...i_n \models \varphi \\ 0 & \text{otherwise} \end{cases}$$

Inputs: indices $i_1...i_n$ — e.g. possible world, time
Output: extension/denotation $\llbracket \varphi \rrbracket_{i_1...i_n}$

Barwise & Perry 1983: use situations in a relation $R[\varphi]$ refining $\llbracket \varphi \rrbracket$

More relations associated with φ

1. Kaplan $i_1...i_n \rightsquigarrow u,i$ (2-dimensions: use, truth)
 - character: $u \mapsto$ content (context u of use)
 - content: $i \mapsto$ truth value $\approx \llbracket \varphi \rrbracket_i$ (fixed context u)

2. Dynamic semantics: meaning as context change
 - context \approx set of possible worlds (e.g. Veltman)
 + normality (V 1996), laws (V 2005)
 - Kamp $(M,f) \approx$ world-sequence pair (Heim)

3. Relations between denotations
 - a proof of $\varphi_1 \supset \varphi_2$ maps proofs of φ_1 to proofs of φ_2
 - links (e.g. causation) underlying rhetorical relations

PLAN. Start with refinement $R[\varphi]$ of $\llbracket \varphi \rrbracket$ with u

About what?

Truthmakers as
(i) pairs for $\varphi \land \psi$ (propositions-as-types)
(ii) functions for $\varphi \supset \psi$ (propositions-as-types)
(iii) events for "action sentences" φ (Davidson 1967)
(iv) main eventualities behind discourse relations (SDRT)
 - special case of causation: Schubert
(v) relevant bits of an index, for "simple" φ (with $n=1$)
 $$s \ R[\varphi] \ s' \iff s' \subseteq s \text{ and } s' \in A[\varphi]$$
 - records and frames: Cooper
 - temporal structure: strings (finite-state methods)
Introduction

1. **Denotations versus indices**
 - From ordered pairs to records and strings
 - Conditionals and entailments

Denotations versus indices

- **From ordered pairs to records and strings**
 - Conditionals and entailments

Description versus Modal Logics

<table>
<thead>
<tr>
<th>Description Logic</th>
<th>Modal Logic</th>
</tr>
</thead>
<tbody>
<tr>
<td>extensions</td>
<td>possible worlds ...</td>
</tr>
<tr>
<td>noun phrase</td>
<td>sentence</td>
</tr>
<tr>
<td>object level</td>
<td>meta-level</td>
</tr>
<tr>
<td>concept</td>
<td>proposition</td>
</tr>
<tr>
<td>role</td>
<td>accessibility relation</td>
</tr>
</tbody>
</table>

Description logic - popular for ontologies and semantic web
- shift complexity from sentences (truth values) to noun phrases

 - Every daughter of a farmer owns a pony.
 - (parent) → (own) → (pony)
 - decontextualized?
 - **Proposal.** Situate (context, not just denotations)

Relations between sentences and situations

<table>
<thead>
<tr>
<th>object level</th>
<th>predication</th>
<th>index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schubert</td>
<td>true of</td>
<td></td>
</tr>
<tr>
<td>Kratzer</td>
<td>exemplify A[ϕ]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>true in support T[ϕ]</td>
<td></td>
</tr>
</tbody>
</table>

- Schubert
 - John’s driving while phoning caused an accident.
- Kratzer
 - Whenever a man rides a donkey, the man gives a treat to the donkey.

Flesh out denotations to (non-maximal) indices

- \(\varphi \vdash \psi \) if \((\forall i \in C) i \models \varphi \) implies \(i \models \psi \)
 - if \(C \cap T[\varphi] \subseteq T[\psi] \)

For “simple” \(\varphi \),

\[
s \mathcal{R}[\varphi] s' \text{ if } s' \in A[\varphi] \text{ and } s' \subseteq s
\]

\[
T[\varphi] = \{ s | (\exists s' \in A[\varphi]) s' \subseteq s \}
\]

for suitable “part-of” relation \(\subseteq \).

Add constraints \((C) \) above on \(s \) but allow \(s \) to be non-maximal
- logical omniscience
 - Pat believes 1+1=2 but not Fermat’s Last Theorem.
- vagueness (overprecision)
John fell.

\[\varphi \land \psi \]

Mary pushed him.

\[\text{fall } f \land \text{push } p \]

Order in \((f, p) \in A[\varphi \land \psi]\) from \(\varphi\) preceding \(\psi\) in \(\varphi \land \psi\).

But expect:

- \(p\) happens before \(f\) (temporal structure)
- \(p\) causes \(f\) (conceptual structure?)

Records trade tuple order for un-ordered labels (attributes)
- HPSC, DRT, SDRT (Asher and Lascarides)

Strings of chronologically ordered snapshots (cartoon/film strip)

\[A \text{ dog appears to be approaching.} \]

\[x : \text{Ind} \]

\[c_0 : \text{dog}(x) \]

\[c_2 : \text{appear}(c_0 : \text{approach}(x)) \]

A record type \(T\) is closed under \(\sqsubseteq\) (subject to modification)

\[r \in T \text{ and } r \sqsubseteq r' \implies r' \in T. \]

\[\begin{bmatrix} x = a \\ c_0 = p \\ c_1 = q \end{bmatrix} \sqsubseteq \begin{bmatrix} x = a \\ c_0 = p \\ c_1 = q \end{bmatrix} \]

Build \(T\) from its \(\sqsubseteq\)-minimal elements — \(A[\varphi]\) before \(T[\varphi]\)

Labels as attributes or discourse referents or clutter — in which case anonymize (as Prolog singleton variables)

Beyond Cartesian products

\(\text{π} : "\text{no time without change}"\)

\[\pi(e, e', e, e', e', e', e', e') = e, e', e' \]

For maximality, add pre- and post-events

\[e, e', e' \leadsto e, \text{pre}(e'), e, e', e', \text{post}(e) \]

Moral. Base temporal granularity on alphabet (box fillers)
Entailments relative to a set C of indices

Equate $\models_C \varphi \supset \psi$ with $\varphi \models_C \psi$ where

$$\varphi \models_C \psi \iff \forall i \in C \ i \models \varphi \implies i \models \psi$$

$$\varphi \models_C \psi \iff C \cap T[\varphi] \subseteq T[\psi]$$

context change from C to $C \cap T[\varphi] —$ purely eliminative

Defeasible variants revise $C \cap T[\varphi]$ to $update(C, \varphi)$

$$\varphi \models_C \psi \iff update(C, \varphi) \subseteq T[\psi]$$

Non-eliminative update for counterfactuals - Veltman 2005:

The crucial trick is that actual retraction takes place at the level of the bases of the worlds.

... combining some of the ideas put forward here with the event based semantics put forward in Condoravdi (2002).

--

Functions for implications, in context

A proof of $\varphi \supset \psi$ maps proofs of φ to proofs of ψ

$$A[\varphi \supset \psi] = A[\varphi] \to A[\psi]$$

or contextualizing, let $\llbracket x \rrbracket_i = \{s \mid i \ R[\chi] s\}$ and

$$\llbracket \varphi \supset \psi \rrbracket_i = \llbracket \varphi \rrbracket_i \to \llbracket \psi \rrbracket_i.$$

For fixed i, proofs-as-functions and truth conditions converge

$$\llbracket \varphi \supset \psi \rrbracket_i \neq \emptyset \iff i \models \psi \text{ or not } i \models \varphi.$$

Let i range over some set C, and allow changes from left to right.

Link φ to ψ

If John fell, [that’s because] Mary pushed him.

Whenever a man rides a donkey, the man gives a treat to the donkey [for the ride].

- make links explicit in semantic representation
 - construction versus interpretation
- relations between denotations versus relations between indices/events/situations versus worlds
- constraints rather than preference relation on possible worlds

V&B 2010 $\varphi \rightsquigarrow \psi$ as $\varphi \wedge \neg Ab_{\varphi} \supset \psi$

V 1996 $\varphi \rightsquigarrow \psi$ refines expectations \approx binary relation on possible worlds comparing normality

Cooper: similar records (denotations) versus possible worlds (Lewis)
Case study: inertia

From inertia worlds (Dowty) to inertial fluents with forces as abnormalities, \(f^\varphi \approx Ab_{\varphi, \text{next }} \varphi \)

\[
\varphi, f^\varphi \implies \square \varphi
\]

- persist forward \(\varphi \implies \square \varphi \implies f^\varphi \)
- persist backward \(\square \varphi \implies \varphi \implies f^\varphi \)
- succeed unless opposed \(f^\varphi \implies \varphi \implies f^\varphi \)

resolve by weighing forces --- rank constraints!

Forces from actions \(\alpha \)

\[
\text{try}(\alpha) \implies f^\varphi \quad \text{for } \varphi \in \text{add-list}(\alpha)
\]

Tim.Fernando@tcd.ie
Situations in and out of relations