1. Write a DCG that accepts strings of the form $u2v$ where u and v are strings over the alphabet $\{0, 1\}$ such that the number of 0’s in u is twice the number of 1’s in v. For example,

```
| ?- s([0,1,0,1,2,0,0,1,0],L).
L = [];  
L = [0];  
no
```

2. Exercise 6.6 in Learn Prolog Now describes a street with

(*) three neighbouring houses that all have a different colour, namely red, blue, and green. People of different nationalities live in the different houses and they all have a different pet.

Leaving out all the other constraints mentioned in that exercise, write a DCG that outputs strings

```
[Col1,Nat1,Pet1, Col2,Nat2,Pet2, Col3,Nat3,Pet3]
```

satisfying (*), where the nationalities are english, spanish, japanese and the pets are jaguar, snail, zebra. For example,

```
| ?- s([red,english,snail, blue,japanese,jaguar, green,spanish,z], []).
Z = zebra;  
no
```

3. Write a DCG that given a non-negative integer Sum, accepts lists of integers ≥ 1 that add up to Sum. For example,

```
| ?- s(3,L,[]).
L = [3];  
L = [2,1];  
L = [1,2];  
L = [1,1,1];  
no
```

It may be useful to write a predicate `mkList(+Num,?List)` that returns a list `List` of integers from `Num` down to 1. For example,

```
| ?- mkList(3,L).
L = [3,2,1];  
no
```

Be sure you understand how the DCG clauses translate to ordinary Prolog clauses with difference lists.

1 Due Nov 19 (Tuesday): submit to Blackboard.