Recall that a non-negative integer \(n \) can be encoded (in unary) as \(n \) \texttt{succ}'s applied to \(0 \):

\[
\text{numeral}(0).
\]
\[
\text{numeral}(\text{succ}(X)) :- \text{numeral}(X).
\]

In general, Prolog terms constructed from a constant \texttt{null} and \(k + 1 \) unary functors \(f_0, \ldots, f_k \) amount to strings over an alphabet \(\{a_0, \ldots, a_k\} \), with \texttt{null} encoding the empty string, and \(f_i(\texttt{null}) \) encoding the string \(a_i \). For strings of length > 1, it will prove useful (for some purposes such as the arithmetic encoding below) to encode the string in reverse, representing, for example, \(a_2 a_3 \) as \(f_3(f_2(\texttt{null})) \), rather than \(f_2(f_3(\texttt{null})) \).

To simplify notation, let us work with the alphabet \(\{0, 1\} \) (with \(k = 1, a_0 = 0, a_1 = 1 \)) and unary functors \(f_0, f_1 \). Let “pterm” abbreviate “Prolog term built from \texttt{null}, \(f_0, f_1 \)” as described by the clauses

\[
\text{pterm}(\texttt{null}).
\]
\[
\text{pterm}(f_0(X)) :- \text{pterm}(X).
\]
\[
\text{pterm}(f_1(X)) :- \text{pterm}(X).
\]

Putting numbers in binary form,

(id) \(0 \) becomes the bitstring 0 and pterm \(f_0(\texttt{null}) \),
\(1 \) becomes the bitstring 1 and pterm \(f_1(\texttt{null}) \),
\(2 \) becomes the bitstring 10 and pterm \(f_0(f_1(\texttt{null})) \),
\(3 \) becomes the bitstring 11 and pterm \(f_1(f_1(\texttt{null})) \),
\[
\vdots
\]

Note that pterms such as \texttt{null} and \(f_1(f_0(f_0(\texttt{null}))) \) are excluded from (id), even though we can associate non-negative integers (0 and 3) with them.

N.B. In solving the problems below, you are banned from using built-in arithmetic predicates or lists in Prolog.

\(^1\)Due Nov 1 (Tuesday): demonstrate during lab (Tues 2-3) or, failing that, submit to Blackboard. For any extensions beyond Nov 1, email one of your demonstrators, Bojan Bozic (bozicb@scss.tcd.ie), David Woods (dwoods@tcd.ie). E-mail submissions to Tim Fernando will receive an F3.
Problem 1. Define a predicate $\text{incr}(P_1, P_2)$ over pterms P_1 and P_2 such that under (†), P_2 is the successor of P_1. For example, as 3 is $2+1$,

$$| \text{?- incr(f0(f1(null)),X).}$$

$X = f1(f1(null)) ;$

no

You are free to define incr such that incr(null,X) holds for no X or else only for $X=f1(null)$. Likewise for $\text{incr}(P,X)$ where P is some other pterm not in (†).

Problem 2. Define a predicate $\text{legal}(P)$ true exactly of pterms P mentioned by (†). Hence,

$$| \text{?- legal(X).}$$

$X = f0(null) ;$

$X = f1(null) ;$

$X = f0(f1(null)) ;$

$X = f1(f1(null)) ;$

$X = f0(f0(f1(null))) ;$

$X = f1(f0(f1(null))) ;$

...

Using legal, revise your predicate incr to incrR such that

$$| \text{?- incrR(X,Y).}$$

$X = f0(null), Y = f1(null) ;$

$X = f1(null), Y = f0(f1(null)) ;$

$X = f0(f1(null)), Y = f1(f1(null)) ;$

$X = f1(f1(null)), Y = f0(f0(f1(null))) ;$

$X = f0(f0(f1(null))), Y = f1(f0(f1(null))) ;$

$X = f1(f0(f1(null))), Y = f0(f1(f1(null))) ;$

...

Problem 3. Define a predicate $\text{add}(P_1, P_2, P_3)$ over pterms P_1, P_2 and P_3 such that under (†), P_3 is P_1 plus P_2. For example, as 3 is $1+2$,

$$| \text{?- add(f1(null),f0(f1(null)),X).}$$

$X = f1(f1(null)) ;$

no
Problem 4. Define a predicate `mult(P1,P2,P3)` over pterms `P1`, `P2` and `P3` such that under (†), `P3` is `P1` times `P2`. For example, as 2 is 1×2,

$$\text{?- mult(f1(null),f0(f1(null)),X).}$$

X = f0(f1(null)) ;

no

Problem 5. Define a predicate `revers(P, RevP)` that takes a pterm `P` and reverses it to `RevP` so that, for example,

$$\text{?- revers(f0(f1(null)),X).}$$

X = f1(f0(null)) ;

no

Problem 6. Define a predicate `normalize(P, Pn)` true of pterms `P` and `Pn` such that `legal(Pn)` and `P` and `Pn` encode the same number, \(\text{enc}(P) = \text{enc}(Pn)\), where

\[
\begin{align*}
\text{enc}(&\text{null}) := 0 \\
\text{enc}(\text{f0}(X)) := 2 \times \text{enc}(X) \\
\text{enc}(\text{f1}(X)) := 2 \times \text{enc}(X) + 1.
\end{align*}
\]

For example,

$$\text{?- normalize(null, X).}$$

X = f0(null) ;

no

$$\text{?- normalize(f1(f0(f0(null))), X).}$$

X = f1(null) ;

no

Feel free to use Prolog’s built-in binary predicate `\=` for inequality (e.g. `null \= f0(null)`).

Final note. To help your demonstrator (and yourself) test your solutions, please add the following clauses to your Prolog code.

\[
\begin{align*}
\text{\% test add inputting numbers N1 and N2} \\
\text{testAdd(N1,N2,T1,T2,Sum,SumT) :- numb2pterm(N1,T1), numb2pterm(N2,T2),} \\
\text{add(T1,T2,SumT), pterm2numb(SumT,Sum).}
\end{align*}
\]
% test mult inputting numbers N1 and N2
testMult(N1,N2,T1,T2,N1N2,T1T2) :- numb2pterm(N1,T1), numb2pterm(N2,T2),
 mult(T1,T2,T1T2), pterm2numb(T1T2,N1N2).

% test revers inputting list L
testRev(L,Lr,T,Tr) :- ptermlist(T,L), revers(T,Tr), ptermlist(Tr,Lr).

% test normalize inputting list L
testNorm(L,T,Tn,Ln) :- ptermlist(T,L), normalize(T,Tn), ptermlist(Tn,Ln).

% make a pterm T from a number N numb2term(+N,?T)
numb2pterm(0,f0(null)).
numb2pterm(N,T) :- N>0, M is N-1, numb2pterm(M,Temp), incr(Temp,T).

% make a number N from a pterm T pterm2numb(+T,?N)
pterm2numb(null,0).
pterm2numb(f0(X),N) :- pterm2numb(X,M), N is 2*M.
pterm2numb(f1(X),N) :- pterm2numb(X,M), N is 2*M +1.

% reversible ptermlist(T,L)
ptermlist(null,[]).
ptermlist(f0(X),[0|L]) :- ptermlist(X,L).
ptermlist(f1(X),[1|L]) :- ptermlist(X,L).

Apart from these clauses, your program should make no use of Prolog’s built-in arithmetic and list predicates.