Faculty of Engineering, Mathematics and Science
School of Computer Science & Statistics

Integrated Computer Science Programme
B.A. (Mod.) Business & Computing
B.A. (Mod.) Computer Science & Language
Mathematics
Year 3 Annual Examinations

Symbolic Programming

8 May 2017
RDS Main Hall
9:30 – 11:30

Dr Tim Fernando

Instructions to Candidates:
Attempt two questions. All questions carry equal marks. Each question is scored out of a total of 50 marks.

You may not start this examination until you are instructed to do so by the Invigilator.

Materials permitted for this examination:
Non-programmable calculators are permitted for this examination — please indicate the make and model of your calculator on each answer book used.
1. (a) Specify Prolog's response to the following queries (taking for granted the built-in predicates member, setof, findall and number).

(i) member(0,[1,2]).

(ii) member(X,X).

(iii) setof(X,member(X,X),L).

(iv) findall(X,\+member(X,X),L).

(v) number(X).

(vi) [a|b,c] = .(a,.(b,X)).

[12 marks]

(b) What is an anonymous variable, and why is it also called a singleton variable?

[6 marks]

(c) Define a binary predicate lessSome(List1,List2) that is true exactly if List1 and List2 are lists of numbers, and some member of List1 is less than some member of List2.

[8 marks]

(d) Define a binary predicate lessAll(List1,List2) that is true exactly if List1 and List2 are lists of numbers, and every member of List1 is less than every member of List2.

[10 marks]

(e) This question is about 3-ary predicates that, to a first approximation, are true of three lists when the third list is the union of the first two lists. The simplest example is the predicate append(List1,List2,List3) that is true precisely when List3 is List1 followed by List2. (Note that append is sometimes called concatenate.)

(i) Define append(List1,List2,List3) so that, for example,

?- append([1,2,3],[2],L).
L = [1,2,3,2].

[4 marks]
(ii) To remove duplications in List3 (and ensure List3 has no repeating members), we might use setof two different ways as follows:

```
union1([],[],[]).
union1(L1,L2,L3) :-
    setof(X,(member(X,L1);member(X,L2)),L3).
```

```
union2([],[],[]).
union2(L1,L2,L3) :-
    setof(X,(member(X,L1);member(X,L2)),U),
    setof(X,member(X,L3),U).
```

Explain how union1 and union2 differ by giving examples of queries handled properly by one but not the other, and vice versa.

[5 marks]

(iii) What unary predicate p(List) can be used below to combine the predicates union1 and union2 as follows.

```
union(L1,L2,L3) :- (p(L3),!,union1(L1,L2,L3));
union2(L1,L2,L3).
```

Are there terms t, t', t'' such that the Prolog interpreter says yes (or true) to $\text{append}(t, t', t'')$, but complains that the query $\text{union}(t, t', t'')$ results in an error? Explain.

[5 marks]
2. (a) Define a binary predicate sum(List,Sum) that is true exactly if List is a non-empty list of numbers that add up to Sum. For example,

?- sum([1,2],X).
X = 3

[5 marks]

(b) The predicate length(List,N) below computes the length of a list.

length([],0).
length([_|T],N) :- length(T,M), N is M+1.

What is a tail-recursive predicate, and how can we redefine the predicate length(List,N) so that it becomes tail-recursive.

[6 marks]

(c) Define a predicate split(+Number,+List,?Small,?Big) that is true exactly whenever

- Number is a member of List
- List is a list of numbers
- Small is the list of all numbers in List smaller than Number
- Big is the list of all numbers in List bigger than Number.

For example,

?- split(2,[1,2,3,0,5,7],Small,Big).
Small = [1,0], Big = [3,5,7].

[15 marks]

(d) Define a predicate median(List,Median) that holds precisely when

- List is a list of odd length where each member of List is a number that occurs exactly once in List, and
- Median is the median of List — i.e., there are as many members of List that are smaller than Median as there are members of List that are bigger than Median.

[10 marks]
(e) Define a predicate `remove(X,List,Rest)` that is true exactly when `X` is a member of `List` and `Rest` is the list resulting from removing `X` from `List`. For example,

```prolog
?- remove(2,[1,2,3,0,5,7],Rest).
Rest = [1,3,0,5,7].
```

[7 marks]

(f) Use the predicate `remove(X,List,Rest)` to define a predicate `permute(+List1,?List2)` that is true exactly when `List2` is a permutation of `List1` (that is, `List2` differs from `List1` at most by a reordering of its members).

[7 marks]
3. This question is about regular expressions over the alphabet \(\{0, 1\} \). An example, with alternation (or choice) written \(|\) (also sometimes written \(+\)), is \(0(0|11)^*11\) which picks out the set of strings of the form

\[0^{n_1}1^{2m_1}0^{n_2}1^{2m_2} \ldots 0^{n_k}1^{2m_k}\]

for some positive integer \(k\), and positive integers \(n_1, m_1, n_2, m_2, \ldots, n_k, m_k\). For example, the smallest string in this set is 011, which we shall represent in Prolog as the list [0,1,1].

(a) Define a DCG that generates the aforementioned set of strings so that for example,

\[- s([0,1,1,0,0,0,1,1],L).\]
\[- L=[0,0,0,1,1] \ ? ;\]
\[- L=[] \ ? ;\]
\[- no.\]

[10 marks]

(b) Write out the DCG in part (a) as ordinary Prolog clauses, making the difference lists explicit. What are difference lists and why are they useful?

[10 marks]

(c) To generalize the construction of the DCG in part (a) to arbitrary regular expressions over the alphabet \(\{0, 1\} \), let us agree to use the binary functors \(c, a\) and \(k\) for concatenation, alternation and Kleene star (respectively) so that for example, \(0|11\) can be encoded as \(a(0,c(1,1))\), and \((0|11)^*\) can be encoded as \(k(a(0,c(1,1)))\). For completeness, let us use the constant \(e\) for the empty set (consisting of no strings), and \(n\) for the set consisting (solely) of the string [] of length 0. Now, the idea is to add an argument to the symbol \(s\) in the part (a), which we can fill by any regular expression over \(\{0, 1\} \) (under the encoding above) so that, for example,

\[- s(c(1,1),L,[]).\]
\[- L=[1,1] \ ? ;\]
\[- no.\]
\[- s(a(0,c(1,1)),L,[]).\]
\[- L=[0] \ ? ;\]
\[- L=[1,1] \ ? ;\]
\[- no.\]
?- s(k(a(0,c(1,1))),[0,1,1],T).
T=[0,1,1] ? ;
T=[1,1] ? ;
T=[] ? ;
o.

Define a DCG for this 3-ary predicate s.

[15 marks]

(d) A regular expression such as 0^*1^*, encoded above as $c(k(0),k(1))$, has infinitely many strings, not all of which may appear as Prolog answers the query below.

?- s(c(k(0),k(1)),L,[]).
L=[] ? ;
L=[1] ? ;
L=[1,1] ? ;
L=[1,1,1] ? ;
...

Missing from the enumeration above is [0,1] even though

?- s(c(k(0),k(1)),[0,1],[]).
yes.

Describe concisely how to revise the predicate s to a predicate sr so that for any regular expression R and any string x in R, we need only type ; enough times, as the Prolog interpreter processes the query $sr(R,L)$ before L is set to x. For example, the string [0,0,0,1,1] should be bound to L at some finite point below.

?- sr(c(k(0),k(1)),L).
L=[] ? ;
...
L=[0,0,0,1,1]

[15 marks]