1. Write a DCG that accepts strings of the form $u2v$ where u and v are strings over the alphabet $\{0,1\}$ such that the number of 0’s in u is the same as the number of 1’s in v. For example,

$$\begin{align*}
| \ ?- & \ s([0,1,1,2,0,0,1,0], L). \\
& L = []; \\
& L = [0]; \\
& no
\end{align*}$$

2. Exercise 6.6 in Learn Prolog Now describes a street with

(*) three neighbouring houses that all have a different colour, namely red, blue, and green. People of different nationalities live in the different houses and they all have a different pet.

Leaving out all the other constraints mentioned in that exercise, write a DCG that outputs strings

$$[\text{Col1}, \text{Nat1}, \text{Pet1}, \text{Col2}, \text{Nat2}, \text{Pet2}, \text{Col3}, \text{Nat3}, \text{Pet3}]$$

satisfying (*), where the nationalities are english, spanish, japanese and the pets are jaguar, snail, zebra. For example,

$$\begin{align*}
| \ ?- & \ s([\text{red}, \text{english}, \text{snail}, \text{blue}, \text{japanese}, \text{jaguar}, \text{green}, \text{spanish}, \text{Z}], \\
& []). \\
& Z = \text{zebra}; \\
& no
\end{align*}$$

3. Write a DCG that given a non-negative integer Sum, accepts lists of integers ≥ 1 that add up to Sum. For example,

$$\begin{align*}
| \ ?- & \ s(3, L, []). \\
& L = [3]; \\
& L = [2, 1]; \\
& L = [1, 2]; \\
& L = [1, 1, 1]; \\
& no
\end{align*}$$

It may be useful to write a predicate mkList(+Num, ?List) that returns a list List of integers from Num down to 1. For example,

$$\begin{align*}
| \ ?- & \ mkList(3, L). \\
& L = [3, 2, 1]; \\
& no
\end{align*}$$

Be sure you understand how the DCG clauses translate to ordinary Prolog clauses with difference lists.

1Submit to Blackboard by Thursday, Dec 3. For any extensions beyond that date, email one of your demonstrators, Bojan Bozic (bozicb@scss.tcd.ie) or or Aonghus McGovern (amcgover@scss.tcd.ie).