Predicates as procedures, and arguments as i/o

% increment (+X,-Y)
increment (X,Y) :— Y is X+1.

1/20

https://www.swi-prolog.org/pldoc/doc_for?object=(is)/2

Predicates as procedures, and arguments as i/o

% increment (+X,-Y)
increment (X,Y) :— Y is X+1.

% incr(-X,+Y)
incr(X,Y) :- X is Y-1.

2/20

https://www.swi-prolog.org/pldoc/doc_for?object=(is)/2

Predicates as procedures, and arguments as i/o

% increment (+X,-Y)
increment (X,Y) :— Y is X+1.

% incr(-X,+Y)
incr(X,Y) :- X is Y-1.

% incr2(+X,+Y)
incr2(X,Y) :- X =:= Y-1.

3/20

https://www.swi-prolog.org/pldoc/doc_for?object=(is)/2

Predicates as procedures, and arguments as i/o

% increment (+X,-Y)
increment (X,Y) :- Y is X+1.

% incr(-X,+Y)
incr(X,Y) :- X is Y-1.

% incr2(+X,+Y)
incr2(X,Y) :- X =:= Y-1.

From SWI Prolog documentation:
—Number is +Expr
True when Number is the value to which Expr evaluates.

4/20

https://www.swi-prolog.org/pldoc/doc_for?object=(is)/2

Predicates as procedures, and arguments as i/o

% increment (+X,-Y)
increment (X,Y) :- Y is X+1.

% incr(-X,+Y)
incr(X,Y) :- X is Y-1.

% incr2(+X,+Y)
incr2(X,Y) :- X =:= Y-1.

From SWI Prolog documentation:
—Number is +Expr
True when Number is the value to which Expr evaluates.

+Exprl =:= +Expr2
True if expression Exprl evaluates to a number equal to
Expr2.

5/20

https://www.swi-prolog.org/pldoc/doc_for?object=(is)/2

Mode indicators

+ input (known)

— output (unknown)

From SWI Prolog documentation
An argument mode indicator gives information about the
intended direction in which information carried by a pred-
icate argument is supposed to flow. Mode indicators (and
types) are not a formal part of the Prolog language but
help in explaining intended semantics to the programmer.
There is no complete agreement on argument mode indi-
cators in the Prolog community.

6/20

https://www.swi-prolog.org/pldoc/man?section=preddesc

Mode indicators

+ input (known)

— output (unknown)

From SWI Prolog documentation
An argument mode indicator gives information about the
intended direction in which information carried by a pred-
icate argument is supposed to flow. Mode indicators (and
types) are not a formal part of the Prolog language but
help in explaining intended semantics to the programmer.
There is no complete agreement on argument mode indi-
cators in the Prolog community.

? uncommitted (don’t care ~ unknown)

% successor(?X,7Y)

successor (X,succ(X)).

7/20

https://www.swi-prolog.org/pldoc/man?section=preddesc

Mode indicators

+ input (known)

— output (unknown)

From SWI Prolog documentation
An argument mode indicator gives information about the
intended direction in which information carried by a pred-
icate argument is supposed to flow. Mode indicators (and
types) are not a formal part of the Prolog language but
help in explaining intended semantics to the programmer.
There is no complete agreement on argument mode indi-
cators in the Prolog community.

? uncommitted (don’t care ~ unknown)

% successor(?X,7Y)

successor (X,succ(X)). % :- numeral(X).

% numeral (?X)
numeral (0) .

numeral (succ(X)) :— numeral(X).
8/20

https://www.swi-prolog.org/pldoc/man?section=preddesc

Reversibility with 7
?Terml = ?Term2

Unify Term1 with Term2. True if the unification succeeds.

9/20

Reversibility with 7
?Terml = ?Term2

Unify Term1 with Term2. True if the unification succeeds.

member(?Elem,?List)
True if Elem is a member of List.

10/20

Reversibility with 7
?Terml = ?Term2
Unify Term1 with Term2. True if the unification succeeds.
member(?Elem,?List)
True if Elem is a member of List.

?- member(1,[1]).
true.

11/20

Reversibility with 7
?Terml = ?Term2
Unify Term1 with Term2. True if the unification succeeds.
member(?Elem,?List)
True if Elem is a member of List.

?- member(1,[1]).

true.
?- member (X, [1]).
X=1.

12/20

Reversibility with 7
?Terml = ?Term2

Unify Term1 with Term2. True if the unification succeeds.

member(?Elem,?List)
True if Elem is a member of List.

?- member (1, [1]).
true.

?- member (X, [1]).
X=1.

?- member(1,List).
List = [1]_] ;
List = [_,1]1_] ;

13/20

Reversibility with 7
?Terml = ?Term2

Unify Term1 with Term2. True if the unification succeeds.

member(?Elem,?List)
True if Elem is a member of List.

?- member(1,[1]).
true.
?- member (X, [1]).
X=1.
?- member(1,List).
List = [1]_] ;
List = [_,11_] ;

?- member (X,List).
List = [X]_] ;
List = [_,XI_] ;

14/20

Two more mode indicators

@ argument will not be further instantiated

@Terml == @Term2
True if Term1 is equivalent to Term?2.

var(@Term)

True if Term currently is a free variable.

15/20

Two more mode indicators

@ argument will not be further instantiated

@Terml == @Term2
True if Term1 is equivalent to Term?2.

var(@Term)
True if Term currently is a free variable.

: meta-argument that can be called as goal

\+ :Goal
True if Goal cannot be proven

call(: Goall)
Call Goal.

16/20

On swipl
if(A,B,C) :- (A,!,B) ; C.
neg(A) :- if(A,fail,true).

17/20

On swipl

if(A,B,C) :- (A,!,B) ; C.
neg(A) :- if(A,fail,true).
7- listing(if).
if(A, B, C) :-

(call(A), !, call(B) ; call(C)).
true.

18/20

On swipl
if(A,B,C) :- (A,!,B) ; C.
neg(A) :- if(A,fail,true).
7- listing(if).
if(A, B, C) :-

(call(A), !, call(B) ; call(C)).
true.

7- if(0=0,%X=1,X=2).
X =1.

?7- if(0=1,X=1,X=2).
X = 2.

19/20

On swipl
if(A,B,C) :- (A,!',B) ; C.
neg(A) :- if(A,fail,true).

7- listing(if).
if(A, B, C) :-

(call(A), !, call(B) ; call(C)).
true.

7- if(0=0,%X=1,X=2).
X =1.

?7- if(0=1,X=1,X=2).
X = 2.

?7- 0=0 -> X=0.

X = 0.

7- 0=1 -> X=1.
false.
20/20

