
CSU34011 Symbolic Programming

Second of Two Assessed Assignments

Submit to Blackboard by Thu, Nov 16 (23:59)

Problem 1 (20 points) Write a DCG that accepts strings of the form
u0v where u and v are strings over the alphabet {1, 2, 3} such that u is v in
reverse. For example,

?- s([2,1,3,1,0|L],[]).

L = [1,3,1,2] ;

false

Problem 2 (20 points) Exercise 6.6 in Learn Prolog Now describes a
street with

(∗) three neighbouring houses that all have a different colour, namely red,
blue, and green. People of different nationalities live in the different
houses and they all have a different pet.

Leaving out all the other constraints mentioned in that exercise, write a
DCG that outputs strings

[h(Col1,Nat1,Pet1), h(Col2,Nat2,Pet2), h(Col3,Nat3,Pet3)]

satisfying (∗), where the nationalities are

english, spanish, japanese

and the pets are

jaguar, snail, zebra.

To avoid confusion with the first problem, use different binary predicates for
the difference lists, and, in particular, nbd/2 for the 3 houses. For example,

?- nbd([h(red,english,snail), h(blue,japanese,jaguar),

h(green,spanish,Z)], []).

Z = zebra ;

false.

Problem 3 (20 points) The nth Fibonacci number Fn is, for any integer
n ≥ 0, defined by

F0 := 0

F1 := 1

Fn+2 := Fn + Fn+1

giving F2 = 1, F3 = 2, F4 = 3, F5 = 5, etc. Define a DCG that generates
for every n ≥ 1, lists [F0, F1, . . . , Fn] so that, for example,

1

http://www.learnprolognow.org/lpnpage.php?pagetype=html&pageid=lpn-htmlse26


?- fib(L,[]).

L = [0,1] ;

L = [0,1,1] ;

L = [0,1,1,2] ;

L = [0,1,1,2,3] ;

L = [0,1,1,2,3,5] ;

...

Problem 4 (40 points) The regular expression

(0 + 1)∗ 1(0 + 1)(0 + 1)

denotes the set

L3 := {s ∈ {0, 1}∗ | s has length ≥ 3 and its third to the last bit is 1}

of bitstrings that end with one of the four strings 100, 101, 110, 111 from
1(0 + 1)(0 + 1). Recall from lecture that the predicate accept/1 defined
below is true of strings accepted by a finite automaton with transitions
given by tran/3 and final states given by final/1.

accept(L) :- steps(q0,L,F), final(F).

steps(Q,[],Q).

steps(Q,[H|T],Q2) :- tran(Q,H,Qn), steps(Qn,T,Q2).

Define the predicates tran and final to accept precisely the strings in L3

so that, for example,

?- accept([0,0,Z,0,0]).

Z = 1 ;

false.

Turn your transitions into a DCG for L3 so that, for example,

?- q0([0,0,Z,0,0],[]).

Z = 1 ;

false.

Finally, define a predicate l3(String,Numeral) that holds if String be-
longs to L3 and has length Numeral and numeral(Numeral), where

numeral(0).

numeral(succ(X)) :- numeral(X).

For example,

2

https://www.scss.tcd.ie/Tim.Fernando/LPN/PDFs/farg.pdf


?- l3(String, succ(0)).

false.

?- l3(String, succ(succ(succ(succ(0))))).

String = [0, 1, 0, 0] ;

String = [0, 1, 0, 1] ;

String = [0, 1, 1, 0] ;

String = [0, 1, 1, 1] ;

String = [1, 1, 0, 0] ;

String = [1, 1, 0, 1] ;

String = [1, 1, 1, 0] ;

String = [1, 1, 1, 1] ;

false.

3


