CSU34011 Symbolic Programming

Second of Two Assessed Assignments

Submit to Blackboard by Thu, Nov 16 (23:59)
Problem 1 (20 points) Write a DCG that accepts strings of the form $u 0 v$ where u and v are strings over the alphabet $\{1,2,3\}$ such that u is v in reverse. For example,
?- $s([2,1,3,1,0 \mid L],[])$.
$\mathrm{L}=[1,3,1,2]$;
false

Problem 2 (20 points) Exercise 6.6 in Learn Prolog Now describes a street with
(*) three neighbouring houses that all have a different colour, namely red, blue, and green. People of different nationalities live in the different houses and they all have a different pet.

Leaving out all the other constraints mentioned in that exercise, write a DCG that outputs strings

```
[h(Col1,Nat1,Pet1), h(Col2,Nat2,Pet2), h(Col3,Nat3,Pet3)]
```

satisfying (*), where the nationalities are

```
english, spanish, japanese
```

and the pets are
jaguar, snail, zebra.

To avoid confusion with the first problem, use different binary predicates for the difference lists, and, in particular, nbd/2 for the 3 houses. For example,

```
?- nbd([h(red,english,snail), h(blue,japanese,jaguar),
    h(green,spanish,Z)], []).
Z = zebra ;
false.
```

Problem 3 (20 points) The nth Fibonacci number F_{n} is, for any integer $n \geq 0$, defined by

$$
\begin{aligned}
F_{0} & :=0 \\
F_{1} & :=1 \\
F_{n+2} & :=F_{n}+F_{n+1}
\end{aligned}
$$

giving $F_{2}=1, F_{3}=2, F_{4}=3, F_{5}=5$, etc. Define a DCG that generates for every $n \geq 1$, lists $\left[F_{0}, F_{1}, \ldots, F_{n}\right]$ so that, for example,

```
?- fib(L,[]).
L = [0,1] ;
L = [0,1,1] ;
L = [0,1,1,2] ;
L = [0,1,1,2,3] ;
L = [0,1,1,2,3,5] ;
```

Problem 4 (40 points) The regular expression

$$
(0+1)^{*} 1(0+1)(0+1)
$$

denotes the set
$L_{3}:=\left\{s \in\{0,1\}^{*} \mid s\right.$ has length ≥ 3 and its third to the last bit is 1$\}$
of bitstrings that end with one of the four strings $100,101,110,111$ from $1(0+1)(0+1)$. Recall from lecture that the predicate accept/1 defined below is true of strings accepted by a finite automaton with transitions given by $\operatorname{tran} / 3$ and final states given by final/1.

```
accept(L) :- steps(q0,L,F), final(F).
steps(Q,[],Q).
steps(Q,[H|T],Q2) :- tran(Q,H,Qn), steps(Qn,T,Q2).
```

Define the predicates tran and final to accept precisely the strings in L_{3} so that, for example,

```
?- accept([0,0,Z,0,0]).
Z = 1 ;
false.
```

Turn your transitions into a DCG for L_{3} so that, for example,

```
?- q0([0,0,Z,0,0],[]).
Z = 1 ;
false.
```

Finally, define a predicate 13(String, Numeral) that holds if String belongs to L_{3} and has length Numeral and numeral(Numeral), where
numeral (0).
numeral(succ(X)) :- numeral(X).
For example,

```
?- l3(String, succ(0)).
false.
```

?- 13(String, $\operatorname{succ}(\operatorname{succ}(\operatorname{succ}(\operatorname{succ}(0)))))$.
String $=[0,1,0,0]$;
String $=[0,1,0,1]$;
String = [0, 1, 1, 0] ;
String $=[0,1,1,1]$;
String $=[1,1,0,0]$;
String $=[1,1,0,1]$;
String $=[1,1,1,0]$;
String $=[1,1,1,1]$;
false.

