We know from Chapter 3 of LPN that addition over numerals $0, s(0), s(s(0))$, ... is captured by the predicate add below

```
add(0,X,X).
add(s(X),Y,s(Z)) :- add(X,Y,Z).
```

The aim of this assignment is to get you to think recursively. Accordingly, your answers should not use is/2 or any of Prolog's built-in arithmetic predicates (described in Chapter 5).

Exercise 1 (20/100 points)

Suppose $X+Y$ were numerals whenever X and Y are numerals. Define a predicate $\operatorname{add2}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})$ such that for instance,

```
?- add2(s(0)+s(s(0)), s(s(0)), Z).
Z = s(s(s(s(s(0)))))
?- add2(0, s(0)+s(s(0)), Z).
Z = s(s(s(0)))
?- add2(s(s(0)), s(0)+s(s(0)), Z).
Z = s(s(s(s(s(0)))))
?- add2(s(0)+s(0), s(0+s(s(0))), Z).
Z = s(s(s(s(s(0)))))
```

etc. so that Z takes the form $\mathbf{s}^{n}(0)$ for some $n \geq 0$.
Exercise 2 (20/100 points)
Next we introduce negative numbers via the function symbol p (for predecessor or -1 , just as s stands for successor or +1). Suppose $p(X)$ were a numeral whenever X is a numeral. Modify the predicate add2 to add3 such that for instance,

```
?- add3(p(s(0)), s(s(0)), Z).
Z = s(s(0))
?- add3(0, s(p(0)), Z).
Z = 0
?- add3(p(0)+s(s(0)),s(s(0)),Z).
Z = s(s(s(0)))
?- add3(p(0), p(0)+s(p(0)), Z).
Z = p(p(0))
```

so that Z takes the form $\mathrm{s}^{n}(0)$ or $\mathrm{p}^{n}(0)$ for some $n \geq 0$.

[^0]
Exercise 3 (20/100 points)

Define a predicate minus (X, Y) such that for instance,

```
?- minus(0, Z).
Z = 0
?- minus(s(s(0)), Z).
Z = p(p(0))
?- minus(s(p(0)), Z).
Z = 0
?- minus(p(s(p(0))), Z).
Z = s(0)
```

so that Z takes the form $\mathrm{s}^{n}(0)$ or $\mathrm{p}^{n}(0)$ for some $n \geq 0$.

Exercise 4 (20/100 points)

Suppose further that -X were a numeral whenever X is a numeral. Revise the predicate add3 to add4 such that for instance,

```
?- add4(-p(s(0)), s(s(0)), Z).
Z = s(s(0))
?- add4(p(0)+s(s(0)), -s(s(0)), Z).
Z = p(0)
```

so that Z takes the form $\mathrm{s}^{n}(0)$ or $\mathrm{p}^{n}(0)$ for some $n \geq 0$.

Exercise 5 (10/100 points)

Define the predicate subtract (X, Y, Z) for subtracting Y from X to get Z such that for instance,

```
?- subtract(p(s(0)), s(s(0)), Z).
Z = p(p(0))
?- subtract(p(0), -s(s(0)), Z).
Z = s(0)
```

so that Z takes the form $\mathrm{s}^{n}(0)$ or $\mathrm{p}^{n}(0)$ for some $n \geq 0$.

Exercise 6 (10/100 points)

Revise the predicates add4 to add5 and subtract to subtract2 in order to handle numerals $\mathrm{X}-\mathrm{Y}$, for numerals X and Y . For instance,

```
?- \(\operatorname{add5(-(s(0)-p(0)),s(0),X).}\)
\(\mathrm{X}=\mathrm{p}(0)\)
?- subtract2(p(0), \(\mathrm{p}(\mathrm{s}(0))-\mathrm{s}(\mathrm{s}(0)), \mathrm{Z})\).
\(\mathrm{Z}=\mathrm{s}(0)\)
```

so that Z takes the form $\mathrm{s}^{n}(0)$ or $\mathrm{p}^{n}(0)$ for some $n \geq 0$.

[^0]: ${ }^{1}$ Due in Blackboard by Oct 12 (23:59). Submit one text file suitable for cut-and-pasting onto SWISH-Prolog. Comment out code that causes queries to fail but keep it as a comment for possible partial credit.

