Faculty of Engineering, Mathematics \& Science
 School of Computer Science \& Statistics

Integrated Computer Science Sample
Computer Science \& Business
Computer Science \& Language Mathematics

Symbolic Programming

Thu, 15 Dec 2022
RDS SIM COURT
14:00-16:00

Dr Tim Fernando

Instructions to Candidates:
Answer both questions. Each question is 50 points (for a total of 100).
You may not start this examination until you are instructed to do so by the Invigilator.

Materials permitted for this examination:
Non-programmable calculators are permitted for this examination - please indicate the make and model of your calculator on each answer book used.

Question 1

(a) Consider the English sentence
$(\dagger) \quad$ Wizards are magic.
Let us agree to translate magic as a Prolog predicate magic/1 of arity 1 .
(i) Give a Prolog rule translating (\dagger), and describe how a Prolog interpreter consulting this rule would respond to the query
?- magic(X).
(ii) Give a Prolog fact translating (\dagger), and a Prolog query that can be answered on the basis of this fact.
(iii) Next, consider the English sentence
(\ddagger) Magic is magic.
Translate (\ddagger) in Prolog and describe how the Prolog interpreter consulting this translation responds to the query

```
?- magic(X).
```

Can you translate (\ddagger) in Prolog so that the query above does not lead to a loop?
(b) Recall that the Prolog predicate $=/ 2$ is unification without the occurs check. As a result, there is a term X such that $X=[X]$. Is the X such that $X=[X]$ a list, and if so what are its members?
[5 marks]
(c) Next, consider the term Y such that $\mathrm{Y}=[\mathrm{Y} \mid \mathrm{Y}]$. Is this term a list, and if so what are its members?
(d) Recall that the non-negative integers $0,1,2, \ldots$ can be encoded as the numerals $0, \operatorname{succ}(0), \operatorname{succ}(\operatorname{succ}(0)), \ldots$ as described in numeral(0).

```
numeral(succ(X)) :- numeral(X).
```

To represent the numerals in binary notation, define a binary predicate n2bs that converts numerals into bit-strings so that, for example,

```
?- n2bs(0,S).
S = [0] ;
false
?- n2bs(succ(0),S).
S = [1] ;
false
?- n2bs(succ(succ(0)),S).
S = [1,0] ;
false.
?- n2bs(\operatorname{succ}(\operatorname{succ}(\operatorname{succ}(0))),S).
S = [1,1] ;
false.
?- n2bs(\operatorname{succ}(\operatorname{succ}(\operatorname{succ}(\operatorname{succ}(0)))),S).
S = [1,0,0] ;
false.
```

For full credit, make sure all recursive predicates you define are tail-recursive.
[25 marks]

Question 2

(a) Recall that the Prolog predicate member (X, L) says X is a member of the list L .
(i) Give the Prolog clauses that define member (X,L).
[4 marks]
(ii) Let memb (X, L) be obtained from member (X, L) by putting a cut in the base case.

```
memb(X,[X|_]) :- !.
memb(X,[_|Y]) :- memb(X,Y).
```

Give Prolog's answer to the query

$$
\text { ?- findall(X,memb }(X,[1,2,3], L) \text {. }
$$

(iii) Another variant of member (X, L) is the predicate me (X, L) obtained by putting a cut in the inductive case.

```
me(X,[X|_]).
me(X,[_|Y]) :- me(X,Y), !.
```

Give Prolog's answer to the query

```
?- findall(X,me(X,[1,2,3],L).
```

(b) Consider the regular expressions over the alphabet $\{1,2\}$. An example, with alternation (or choice) written | (also sometimes written +), is $1(1 \mid 22)^{*} 22$ which picks out the set of strings of the form

$$
1^{n_{1}} 2^{2 m_{1}} 1^{n_{2}} 2^{2 m_{2}} \cdots 1^{n_{k}} 2^{2 m_{k}}
$$

for some positive integer k, and positive integers $n_{1}, m_{1}, n_{2}, m_{2}, \ldots, n_{k}, m_{k}$. For example, the shortest string in this set is 122 , which we shall represent in Prolog as the list $[1,2,2]$.

Define a DCG that generates the aforementioned set of strings so that, for example,
?- $s([1,2,2,1,1,1,2,2], L)$.
$\mathrm{L}=[1,1,1,2,2]$? ;

```
L = [] ? ;
false
```

(c) To generalize the construction of the DCG in part (b) to arbitrary regular expressions over the alphabet $\{1,2\}$, let us agree to use the binary functors c , a and k for concatenation, alternation and Kleene star (respectively) so that, for example, $1 \mid 22$ can be encoded as a(1,c(2,2)), and (1|22)* can be encoded as $\mathrm{k}(\mathrm{a}(1, \mathrm{c}(2,2)))$. For completeness, let us use the constant e for the empty set (consisting of no strings), and n for the set consisting (solely) of the string [] of length 0 . Now, the idea is to add an argument to the symbol s in the part (a), which we can fill by any regular expression over $\{1,2\}$ (under the encoding above) so that, for example,

```
?- s(c(2,2),L,[]).
L = [2,2] ? ;
false
?- s(a(1,c(2, 2)),L,[]).
L = [1] ? ;
L = [2,2] ? ;
false.
?- s(k(a(1,c(2,2))),[1,2,2],T).
T = [1,2,2] ? ;
T = [2,2] ? ;
T = [] ? ;
false.
```

Define a DCG for this 3 -ary predicate s/3 that works for all regular expressions over the alphabet $\{1,2\}$.
(d) A regular expression such as $1^{*} 2^{*}$, encoded above as $\mathrm{c}(\mathrm{k}(1), \mathrm{k}(2))$, has infinitely many strings, not all of which may appear as Prolog answers the query below.
?- $s(c(k(1), k(2)), L,[])$.
$\mathrm{L}=[]$? ;
$\mathrm{L}=[2]$? ;
$\mathrm{L}=[2,2]$? ;
$\mathrm{L}=[2,2,2]$? ;
. . .
Missing from the enumeration above is $[1,2]$ even though

```
?- s(c(k(1),k(2)),[1,2],[]).
true.
```

Revise the predicate s to a predicate sr so that for any regular expression R and any string x in R, we need only type; enough times, as the Prolog interpreter processes the query $\operatorname{sr}(R, \mathrm{~L})$ before L is set to x. For example, the string [1, $1,1,2,2$] should be bound to L at some finite point below.
?- $\operatorname{sr}(\mathrm{c}(\mathrm{k}(1), \mathrm{k}(2)), \mathrm{L})$.
L = [] ;
$\mathrm{L}=[1,1,1,2,2]$

