Lecture 2

• Theory
 – Unification
 – Unification in Prolog
 – Proof search

• Exercises
 – Exercises of LPN chapter 2
 – Practical work
Aim of this lecture

• Discuss **unification** in Prolog
 – Show how Prolog unification differs from standard unification

• Explain the search strategy that Prolog uses when it tries to deduce new information from old, using modus ponens
Unification

- Recall previous example, where we said that Prolog unifies

$$\text{woman}(X)$$

with

$$\text{woman}(\text{mia})$$

thereby instantiating the variable X with the atom mia.
Recall Prolog Terms

- Terms
 - Simple Terms
 - Constants
 - Atoms
 - Variables
 - Numbers
 - Complex Terms
Unification

• Working definition:
 • Two terms unify if they are the same term or if they contain variables that can be uniformly instantiated with terms in such a way that the resulting terms are equal
Unification

• This means that:
 • mia and mia unify
 • 42 and 42 unify
 • woman(mia) and woman(mia) unify

• This also means that:
 • vincent and mia do not unify
 • woman(mia) and woman(jody) do not unify
What about the terms:

- mia and x
Unification

- What about the terms:
 - mia and X
 - woman(Z) and woman(mia)
Unification

- What about the terms:
 - mia and X
 - woman(Z) and woman(mia)
 - loves(mia,X) and loves(X,vincent)
Instantiations

• When Prolog unifies two terms it performs all the necessary instantiations, so that the terms are equal afterwards

• This makes unification a powerful programming mechanism
Revised Definition 1/3

1. If T_1 and T_2 are constants, then T_1 and T_2 unify if they are the same atom, or the same number.
1. If T_1 and T_2 are constants, then T_1 and T_2 unify if they are the same atom, or the same number.

2. If T_1 is a variable and T_2 is any type of term, then T_1 and T_2 unify, and T_1 is instantiated to T_2. (and vice versa)
1. If T_1 and T_2 are constants, then T_1 and T_2 unify if they are the same atom, or the same number.

2. If T_1 is a variable and T_2 is any type of term, then T_1 and T_2 unify, and T_1 is instantiated to T_2. (and vice versa)

3. If T_1 and T_2 are complex terms then they unify if:
 a) They have the same functor and arity, and
 b) all their corresponding arguments unify, and
 c) the variable instantiations are compatible.
Prolog unification: =/2

?- mia = mia.

yes
Prolog unification: =/2

?- mia = mia.
yes
?- mia = vincent.
no
?-
Prolog unification: =/2

?- mia = X.
yes
X = mia

?- mia = X.
yes
How will Prolog respond?

?- X=mia, X=vincent.
How will Prolog respond?

?- X=mia, X=vincent.
no
?-

Why? After working through the first goal, Prolog has instantiated X with *mia*, so that it cannot unify it with *vincent* anymore. Hence the second goal fails.
Example with complex terms

?- c(s(g), Y) = k(X, t(k)).
Example with complex terms

?- k(s(g),Y) = k(X,t(k)).
X=s(g)
Y=t(k)
yes
?-
Example with complex terms

?- k(s(g),t(k)) = k(X,t(Y)).
Example with complex terms

?- k(s(g),t(k)) = k(X,t(Y)).
X=s(g)
Y=k
yes
?-
One last example

?- loves(X,X) = loves(marsellus,mia).
Prolog and unification

• Prolog does not use a standard unification algorithm

• Consider the following query:

 \[\text{?- father}(X) = X. \]

• Do these terms unify or not?
Infinite terms

?- father(X) = X.

X = father(father(father(father(father(father(father(father
(father(father(father(father(father(father(father(father(father

(}
Infinite terms

?- father(X) = X.
X=father(father(father(…))))
yes
yes
?-
Occurs Check

• A standard unification algorithm carries out an occurs check

• If it is asked to unify a variable with another term it checks whether the variable occurs in the term

• In Prolog:

```prolog
?- unify_with_occurs_check(father(X), X).
no
```
vertical(line(point(X,Y),
 point(X,Z))).

horizontal(line(point(X,Y),
 point(Z,Y))).
vertical(line(point(X,Y),
 point(X,Z))).

horizontal(line(point(X,Y),
 point(Z,Y))).

?-
vertical(line(point(X,Y),
 point(X,Z))).

horizontal(line(point(X,Y),
 point(Z,Y))).

?- vertical(line(point(1,1),point(1,3))).
yes
?-
Programming with Unification

vertical(line(point(X,Y),
 point(X,Z))).

horizontal(line(point(X,Y),
 point(Z,Y))).

?- vertical(line(point(1,1),point(1,3))).
 yes
?- vertical(line(point(1,1),point(3,2))).
 no
?-
vertical(line(point(X,Y),
 point(X,Z))).

horizontal(line(point(X,Y),
 point(Z,Y))).

?- horizontal(line(point(1,1),point(1,Y))).
 Y = 1;
 no
 ?-
vertical(line(point(X,Y),
 point(X,Z))).

horizontal(line(point(X,Y),
 point(Z,Y))).

?- horizontal(line(point(2,3),Point)).
Point = point(_554,3);
 no
?-
Exercise: unification
Proof Search

• Now that we know about unification, we are in a position to learn how Prolog searches a knowledge base to see if a query is satisfied.

• In other words: we are ready to learn about proof search
Example

f(a).
f(b).
g(a).
g(b).
h(b).
k(X):- f(X), g(X), h(X).

?- k(Y).
Example: search tree

```prolog
f(a).
f(b).
g(a).
g(b).
h(b).
k(X):- f(X), g(X), h(X).

?- k(Y).
```

```prolog
?- k(Y).
```
Example: search tree

```
f(a).
f(b).
g(a).
g(b).
h(b).
k(X):- f(X), g(X), h(X).

?- k(Y).
```
Example: search tree

f(a).
f(b).
g(a).
g(b).
h(b).
k(X):- f(X), g(X), h(X).

?- k(Y).

?- f(X), g(X), h(X).

?- g(a), h(a).
Example: search tree

\begin{verbatim}
f(a).
f(b).
g(a).
g(b).
h(b).
k(X):- f(X), g(X), h(X).
\end{verbatim}

?- k(Y).

?- k(Y).

?- f(X), g(X), h(X).

?- f(X), g(X), h(X).

Y=X

?- f(X), g(X), h(X).

X=a

?- g(a), h(a).

?- h(a).

?- h(a).
Example: search tree

f(a).
f(b).
g(a).
g(b).
h(b).
k(X):- f(X), g(X), h(X).

?- k(Y).

?- f(X), g(X), h(X).

?- g(a), h(a).

?- h(a).

? Y=X

?- k(Y).

? X=a

?- f(X), g(X), h(X).

?- g(a), h(a).

?- h(a).
Example: search tree

```
f(a).
f(b).
g(a).
g(b).
h(b).
k(X):- f(X), g(X), h(X).

?- k(Y).
```
Example: search tree

\[\text{f(a). f(b). g(a). g(b). h(b). k(X):- f(X), g(X), h(X).}\]

\[\text{?- k(Y).}\]
Example: search tree

f(a).
f(b).
g(a).
g(b).
h(b).
k(X):- f(X), g(X), h(X).

?- k(Y).
Y=b
Example: search tree

f(a).
f(b).
g(a).
g(b).
h(b).
k(X):- f(X), g(X), h(X).

?- k(Y).
 Y=b;
 no
 ?-
loves(vincent,mia).
loves(marsellus,mia).

jealous(A,B):-
 loves(A,C),
 loves(B,C).

?- jealous(X,Y).
Another example

loves(vincent,mia).
loves(marsellus,mia).
jalous(A,B):-
 loves(A,C),
 loves(B,C).

?- jealous(X,Y).
Another example

loves(vincent,mia).
loves(marsellus,mia).

jealous(A,B):-
 loves(A,C),
 loves(B,C).

?- jealous(X,Y).

?- jealous(X,Y).

?- loves(A,C), loves(B,C).
Another example

loves(vincent,mia).
loves(marsellus,mia).

jealous(A,B):-
 loves(A,C),
 loves(B,C).

?- jealous(X,Y).

?- loves(A,C), loves(B,C).

A=vincent
C=mia

?- loves(B,mia).

X=A
Y=B
Another example

loves(vincent, mia).
loves(marsellus, mia).

jealous(A, B):-
 loves(A, C),
 loves(B, C).

?- jealous(X, Y).
X = vincent
Y = vincent
loves(vincent, mia).
loves(marsellus, mia).

jealous(A, B):-
 loves(A, C),
 loves(B, C).

?- jealous(X, Y).
X = vincent
Y = vincent;

?- loves(A, C), loves(B, C).
A = vincent
C = mia

?- loves(B, mia).
B = vincent
B = marsellus
Another example

loves(vincent,mia).
loves(marsellus,mia).

jealous(A,B):-
 loves(A,C),
 loves(B,C).

?- jealous(X,Y).
 X=vincent
 Y=vincent;
 X=vincent
 Y=marsellus;

?- jealous(X,Y).
 X=A
 Y=B

?- loves(A,C), loves(B,C).
 A=vincent
 C=mia

?- loves(B,mia).
 B=vincent
 B=marsellus

?- loves(B,mia).
 A=marsellus
 C=mia
loves(vincent,mia).
loves(marsellus,mia).
jealous(A,B):- love(A,C), loves(B,C).

?- jealous(X,Y).

?- loves(A,C), loves(B,C).

?- loves(B,mia).
Another example

loves(vincent, mia).
loves(marsellus, mia).

jealous(A, B):-
 loves(A, C),
 loves(B, C).

?- jealous(X, Y).

?- loves(A, C), loves(B, C).

?- loves(B, mia).

?- loves(B, mia).

....
X = marsellus
Y = vincent;
X = marsellus
Y = marsellus
loves(vincent, mia).
loves(marsellus, mia).

jealous(A, B):-
 loves(A, C),
 loves(B, C).

?- jealous(X, Y).

?- loves(A, C), loves(B, C).

?- loves(B, mia).

....
X = marsellus
Y = vincent;
X = marsellus
Y = marsellus;
no
Summary of this lecture

• In this lecture we have
 – defined unification
 – looked at the difference between standard unification and Prolog unification
 – introduced search trees
Next lecture

• Discuss **recursion** in Prolog
 – Introduce recursive definitions in Prolog
 – Show that there can be mismatches between the declarative meaning of a Prolog program, and its procedural meaning.