Computation as search

\[\text{search}(\text{Node}) :\text{-} \text{goal}(\text{Node}).\]

\[\text{search}(\text{Node}) :\text{-} \text{arc}(\text{Node},\text{Next}), \text{search}(\text{Next}).\]
Computation as search

```
search(Node) :- goal(Node).

search(Node) :- arc(Node,Next), search(Next).
```

More than one Next may satisfy `arc(Node,Next)`

\[\iff \text{non-determinism} \]

Computation eliminates non-determinism (determinization)

Available choices depend on `arc`-actions specified by Turing machine (graph)

Bound number of calls to `arc` (iterations of `search`)
Computation as search

\[
\text{search}(\text{Node}) \leftarrow \text{goal}(\text{Node}).
\]

\[
\text{search}(\text{Node}) \leftarrow \text{arc}(\text{Node}, \text{Next}), \text{search}(\text{Next}).
\]

More than one \text{Next} may satisfy \text{arc}(\text{Node}, \text{Next})
\[\rightsquigarrow\] non-determinism

Choose \text{Next} closest to goal (heuristic: best-first),
keeping track of costs (min cost, A*)
Computation as search

\[
\text{search}(\text{Node}) :\text{ }\text{a} \Rightarrow \text{goal}(\text{Node}).
\]

\[
\text{search}(\text{Node}) :\text{ }\text{a} \Rightarrow \text{arc}(\text{Node},\text{Next}), \text{search}(\text{Next}).
\]

More than one \text{Next} may satisfy \text{arc}(\text{Node},\text{Next})
\[\Rightarrow \text{non-determinism}\]

Choose \text{Next} closest to goal (heuristic: best-first),
keeping track of costs (min cost, A*)

Available choices depend on \text{arc}
- actions specified by Turing machine (graph)
Computation as search

\[
\text{search}(\text{Node}) :\text{-} \quad \text{goal}(\text{Node}).
\]

\[
\text{search}(\text{Node}) :\text{-} \quad \text{arc}(\text{Node}, \text{Next}), \text{search}(\text{Next}).
\]

More than one \(\text{Next}\) may satisfy \(\text{arc}(\text{Node}, \text{Next})\)
\[\implies\] non-determinism

Choose \(\text{Next}\) closest to goal (heuristic: best-first),
keeping track of costs (min cost, \(A^*\))

Available choices depend on \(\text{arc}\)
- actions specified by Turing machine (graph)

Computation eliminates non-determinism (determinization)
Computation as search

\[
\text{search}\,(\text{Node}) \ :- \ \text{goal}\,(\text{Node}).
\]
\[
\text{search}\,(\text{Node}) \ :- \ \text{arc}\,(\text{Node},\text{Next}), \ \text{search}\,(\text{Next}).
\]

More than one \text{Next} may satisfy \text{arc}\,(\text{Node},\text{Next})
\iff \text{non-determinism}

Choose \text{Next} closest to goal (heuristic: best-first),
keeping track of costs (min cost, \text{A}^*)

Available choices depend on \text{arc}
- actions specified by Turing machine (graph)

Computation eliminates non-determinism (determinization)
Bound number of calls to \text{arc} (iterations of \text{search})
Feasibility and non-determinism: P vs NP

Cobham’s Thesis

A problem is feasibly solvable iff some deterministic Turing machine (dTm) solves it in polynomial time.

\[P = \{ \text{problems a dTm solves in polynomial time} \} \]
Feasibility and non-determinism: P vs NP

Cobham’s Thesis

A problem is feasibly solvable iff some deterministic Turing machine (dTm) solves it in polynomial time.

\[P = \{ \text{problems a dTm solves in polynomial time} \} \]

\[NP = \{ \text{problems a non-deterministic Tm solves in polynomial time} \} \]
Feasibility and non-determinism: P vs NP

Cobham’s Thesis

A problem is feasibly solvable iff some deterministic Turing machine (dTm) solves it in polynomial time.

\[P = \{ \text{problems a dTm solves in polynomial time} \} \]

\[NP = \{ \text{problems a non-deterministic Tm solves in polynomial time} \} \]

Clearly, \(P \subseteq NP \).
Feasibility and non-determinism: P vs NP

Cobham’s Thesis
A problem is feasibly solvable iff some deterministic Turing machine (dTm) solves it in polynomial time.

\[P = \{ \text{problems a dTm solves in polynomial time} \} \]

\[NP = \{ \text{problems a non-deterministic Tm solves in polynomial time} \} \]

Clearly, \(P \subseteq NP \).

Whether \(P = NP \) is the most celebrated open mathematical problem in computer science.
Feasibility and non-determinism: P vs NP

Cobham’s Thesis

A problem is feasibly solvable iff some deterministic Turing machine (dTm) solves it in polynomial time.

\[P = \{ \text{problems a dTm solves in polynomial time} \} \]

\[NP = \{ \text{problems a non-deterministic Tm solves in polynomial time} \} \]

Clearly, \(P \subseteq NP \).

Whether \(P = NP \) is the most celebrated open mathematical problem in computer science.

\(P \neq NP \) would mean non-determinism wrecks feasibility.
Feasibility and non-determinism: P vs NP

Cobham’s Thesis

A problem is feasibly solvable iff some deterministic Turing machine (dTm) solves it in polynomial time.

\[P = \{ \text{problems a dTm solves in polynomial time} \} \]

\[NP = \{ \text{problems a non-deterministic Tm solves in polynomial time} \} \]

Clearly, \(P \subseteq NP \).

Whether \(P = NP \) is the most celebrated open mathematical problem in computer science.

\(P \neq NP \) would mean non-determinism wrecks feasibility.

\(P = NP \) says non-determinism makes no difference to feasibility.
A closer look

Given a set L of strings, and a Tm M.

\[
\text{TIME}(n^k) := \{ L | \text{some dTm solves } L \text{ in time } n^k \}
\]

\[
\text{NTIME}(n^k) := \{ L | \text{some nTm solves } L \text{ in time } n^k \}
\]

\[
\text{NP} := \bigcup_{k \geq 1} \text{NTIME}(n^k)
\]
A closer look

Given a set L of strings, and a Tm M.

M solves L in time n^k if there is a fixed integer $c > 0$ such that for every string s of size n,

$$s \in L \iff M \text{ accepts } s \text{ within } c \cdot n^k \text{ steps.}$$
A closer look

Given a set L of strings, and a Tm M.

M solves L in time n^k if there is a fixed integer $c > 0$ such that for every string s of size n,

$$s \in L \iff M \text{ accepts } s \text{ within } c \cdot n^k \text{ steps.}$$

\[
\text{TIME}(n^k) := \{ L \mid \text{some dTm solves } L \text{ in time } n^k \}
\]

e.g. TIME(n) includes every regular language
A closer look

Given a set L of strings, and a Tm M.

M solves L in time n^k if there is a fixed integer $c > 0$ such that for every string s of size n,

$$s \in L \iff M \text{ accepts } s \text{ within } c \cdot n^k \text{ steps.}$$

$$\text{TIME}(n^k) := \{ L \mid \text{some dTm solves } L \text{ in time } n^k \}$$

e.g. TIME(n) includes every regular language

$$P := \bigcup_{k \geq 1} \text{TIME}(n^k)$$
A closer look

Given a set L of strings, and a Tm M.

M solves L in time n^k if there is a fixed integer $c > 0$ such that for every string s of size n,

$$s \in L \iff M \text{ accepts } s \text{ within } c \cdot n^k \text{ steps.}$$

$$\text{TIME}(n^k) := \{ L \mid \text{some dTm solves } L \text{ in time } n^k \}$$

e.g. TIME(n) includes every regular language

$$P := \bigcup_{k \geq 1} \text{TIME}(n^k)$$

$$\text{NTIME}(n^k) := \{ L \mid \text{some nTm solves } L \text{ in time } n^k \}$$

$$NP := \bigcup_{k \geq 1} \text{NTIME}(n^k)$$
Boolean satisfiability (SAT)

SAT. Given a Boolean expression \(\varphi \) with variables \(x_1, \ldots, x_n \), can we make \(\varphi \) true by assigning true/false to \(x_1, \ldots, x_n \)?

e.g., \((x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor \overline{x_3}) \)
Boolean satisfiability (SAT)

SAT. Given a Boolean expression \(\varphi \) with variables \(x_1, \ldots, x_n \), can we make \(\varphi \) true by assigning true/false to \(x_1, \ldots, x_n \)?

Checking that a particular assignment makes \(\varphi \) true is easy (\(P \)).

e.g., \((x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor \overline{x_3})\)
Boolean satisfiability (SAT)

SAT. Given a Boolean expression \(\varphi \) with variables \(x_1, \ldots, x_n \), can we make \(\varphi \) true by assigning true/false to \(x_1, \ldots, x_n \)?

Checking that a particular assignment makes \(\varphi \) true is easy \((P)\). Non-determinism (guessing the assignment) puts SAT in \(NP \).

\[
\text{e.g., } (x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor \overline{x_3})
\]
Boolean satisfiability (SAT)

SAT. Given a Boolean expression φ with variables x_1, \ldots, x_n, can we make φ true by assigning true/false to x_1, \ldots, x_n?

Checking that a particular assignment makes φ true is easy (P). Non-determinism (guessing the assignment) puts SAT in NP. But is SAT in P? There are 2^n assignments to try.

\[(x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_3) \]

\[e.g., (x_1 \lor \overline{\overline{x_2}} \lor x_3) \land (\overline{x_1} \lor x_3) \]
Boolean satisfiability (SAT)

SAT. Given a Boolean expression φ with variables x_1, \ldots, x_n, can we make φ true by assigning true/false to x_1, \ldots, x_n?

Checking that a particular assignment makes φ true is easy (P). Non-determinism (guessing the assignment) puts SAT in NP. But is SAT in P? There are 2^n assignments to try.

Cook-Levin Theorem. SAT is in P iff $P = NP$.

\[e.g., (x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor \overline{x_3}) \]
Boolean satisfiability (SAT)

SAT. Given a Boolean expression \(\varphi \) with variables \(x_1, \ldots, x_n \), can we make \(\varphi \) true by assigning true/false to \(x_1, \ldots, x_n \)?

Checking that a particular assignment makes \(\varphi \) true is easy (\(P \)). Non-determinism (guessing the assignment) puts SAT in \(NP \). But is SAT in \(P \)? There are \(2^n \) assignments to try.

Cook-Levin Theorem. SAT is in \(P \) iff \(P = NP \).

\[
\text{e.g., } (x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor \overline{x_3})
\]

CSAT: \(\varphi \) is a conjunction of clauses, where a *clause* is an OR of literals, and a *literal* is a variable \(x_i \) or negated variable \(\overline{x_i} \).
Boolean satisfiability (SAT)

SAT. Given a Boolean expression φ with variables x_1, \ldots, x_n, can we make φ true by assigning true/false to x_1, \ldots, x_n?

Checking that a particular assignment makes φ true is easy (P). Non-determinism (guessing the assignment) puts SAT in NP. But is SAT in P? There are 2^n assignments to try.

Cook-Levin Theorem. SAT is in P iff $P = NP$.

e.g., $(x_1 \lor \overline{x}_2 \lor x_3) \land (\overline{x}_1 \lor \overline{x}_3)$

CSAT: φ is a conjunction of clauses, where a clause is an OR of literals, and a literal is a variable x_i or negated variable $\overline{x_i}$

k-SAT: every clause has exactly k literals

3-SAT is as hard as SAT, 2-SAT is in P
Boolean satisfiability (SAT)

SAT. Given a Boolean expression \(\varphi \) with variables \(x_1, \ldots, x_n \), can we make \(\varphi \) true by assigning true/false to \(x_1, \ldots, x_n \)?

Checking that a particular assignment makes \(\varphi \) true is easy (\(P \)). Non-determinism (guessing the assignment) puts SAT in \(NP \).

But is SAT in \(P \)? There are \(2^n \) assignments to try.

Cook-Levin Theorem. SAT is in \(P \) iff \(P = NP \).

\[
\text{e.g., } (x_1 \lor \overline{x}_2 \lor x_3) \land (\overline{x}_1 \lor \overline{x}_3)
\]

CSAT: \(\varphi \) is a conjunction of clauses, where a clause is an OR of literals, and a literal is a variable \(x_i \) or negated variable \(\overline{x}_i \)

\(k \)-SAT: every clause has exactly \(k \) literals

3-SAT is as hard as SAT, 2-SAT is in \(P \)

Horn-SAT: every clause has at most one positive literal — linear