Conciseness from Non-Determinism

NFA = fsm, without determinism requirement on DFAs.

\[L_n := \{ s \in (0 + 1)^+ | \text{\(n\)-th to the last bit of \(s\) is 1} \} \]
\[= (0 + 1)^* 1 (0 + 1)^{n-1} \text{ length is } O(n) \]

Claim 1. There is an NFA accepting \(L_n\) with \(n + 1\) states

Claim 2. A DFA accepting \(L_n\) has at least \(2^n\)-states
Conciseness from Non-Determinism

NFA = fsm, \textit{without} determinism requirement on DFAs.

\[L_n := \{s \in (0 + 1)^+ \mid \text{n-th to the last bit of } s \text{ is 1}\} \]
\[= (0 + 1)^*1(0 + 1)^{n-1} \quad \text{length is } \mathcal{O}(n) \]

\textbf{Claim 1.} There is an NFA accepting \(L_n \) with \(n + 1 \) states

\textbf{Sketch.} Initial state \(q_0 \) for \((0 + 1)^* \) plus \(n \) states for \(1(0 + 1)^{n-1} \)

\textbf{Claim 2.} A DFA accepting \(L_n \) has at least \(2^n \)-states
Conciseness from Non-Determinism

NFA = fsm, without determinism requirement on DFAs.

\[L_n := \{ s \in (0 + 1)^+ \mid \text{n-th to the last bit of } s \text{ is } 1 \} = (0 + 1)^*1(0 + 1)^{n-1} \text{ length is } O(n) \]

Claim 1. There is an NFA accepting \(L_n \) with \(n + 1 \) states

Sketch. Initial state \(q_0 \) for \((0 + 1)^* \) plus \(n \) states for \(1(0 + 1)^{n-1} \)

Claim 2. A DFA accepting \(L_n \) has at least \(2^n \)-states

Proof. Let \(M \) be a DFA with \(< 2^n \) states.
On 2 strings \(s, s' \in (0 + 1)^n \), \(M \) ends up at the same state.
Let \(k \) be a string position where \(s \) and \(s' \) disagree.
Exactly one of \(s0^{k-1} \) and \(s'0^{k-1} \) is in \(L_n \); so \(M \) can't accept \(L_n \).
A DFA for \((0 + 1)^*1(0 + 1)^{n-1}\)

- state set \((0 + 1)^n\) with initial state \(q_0 = 0^n\)
L-inseparable histories

A DFA for $(0 + 1)^* 1 (0 + 1)^{n-1}$

- state set $(0 + 1)^n$ with initial state $q_0 = 0^n$
- transitions $is \xrightarrow{j} sj$ [remember only last n bits]
L-inseparable histories

A DFA for \((0 + 1)^*1(0 + 1)^{n-1}\)

- state set \((0 + 1)^n\) with initial state \(q_0 = 0^n\)
- transitions \(is \xrightarrow{j} sj\) [remember only last \(n\) bits]
- set \(1(0 + 1)^{n-1}\) of final states
L-inseparable histories

A DFA for \((0 + 1)^*1(0 + 1)^{n-1}\)

- **state set** \((0 + 1)^n\) with initial state \(q_0 = 0^n\)
- **transitions** \(is \overset{j}{\rightarrow} sj\) [remember only last \(n\) bits]
- set \(1(0 + 1)^{n-1}\) of final states

Given a language \(L\) over an alphabet \(\Sigma\), and strings \(s, s' \in \Sigma^*\),

- a **string** \(r\) \(L\)-separates \(s, s'\) if exactly one of \(sr\) and \(s'r\) is in \(L\)
L-inseparable histories

A DFA for $(0 + 1)^*1(0 + 1)^{n-1}$

- state set $(0 + 1)^n$ with initial state $q_0 = 0^n$
- transitions $is \xrightarrow{j} sj$ [remember only last n bits]
- set $1(0 + 1)^{n-1}$ of final states

Given a language L over an alphabet Σ, and strings $s, s' \in \Sigma^*$,

- a string r L-separates s, s' if exactly one of sr and $s'r$ is in L
- $s \sim^L s'$ iff no string L-separates s, s'
L-inseparable histories

A DFA for \((0 + 1)^*1(0 + 1)^{n-1}\)

- state set \((0 + 1)^n\) with initial state \(q_0 = 0^n\)
- transitions \(s_j \rightarrow s_j\) [remember only last \(n\) bits]
- set \(1(0 + 1)^{n-1}\) of final states

Given a language \(L\) over an alphabet \(\Sigma\), and strings \(s, s' \in \Sigma^*\),

- a string \(r\) **\(L\)-separates** \(s, s'\) if exactly one of \(sr\) and \(s'r\) is in \(L\)
- \(s \sim^L s'\) iff no string \(L\)-separates \(s, s'\)

Myhill-Nerode Theorem

\(L\) is regular iff \(\sim^L\) has finitely many equivalence classes.

\[
s_L := \{ s' \in \Sigma^* \mid s \sim^L s' \}
\]
L-inseparable histories

A DFA for $(0 + 1)^*1(0 + 1)^{n-1}$

- state set $(0 + 1)^n$ with initial state $q_0 = 0^n$
- transitions $s^j \rightarrow s^j$ [remember only last n bits]
- set $1(0 + 1)^{n-1}$ of final states

Given a language L over an alphabet Σ, and strings $s, s' \in \Sigma^*$,

- a string r L-separates s, s' if exactly one of sr and $s'r$ is in L
- $s \sim^L s'$ iff no string L-separates s, s'

Myhill-Nerode Theorem

L is regular iff \sim^L has finitely many equivalence classes.
If so, these are the states of a DFA accepting L with fewest states.

- states $s_L := \{ s' \in \Sigma^* \mid s \sim^L s' \}$ with ϵ_L initial
L-inseparable histories

A DFA for \((0 + 1)^n1(0 + 1)^{n-1}\)

- state set \((0 + 1)^n\) with initial state \(q_0 = 0^n\)
- transitions \(s \xrightarrow{j} s_j\) [remember only last \(n\) bits]
- set \(1(0 + 1)^{n-1}\) of final states

Given a language \(L\) over an alphabet \(\Sigma\), and strings \(s, s' \in \Sigma^*\),

- a string \(r\) **\(L\)-separates** \(s, s'\) if exactly one of \(sr\) and \(s'r\) is in \(L\)
- \(s \sim^L s'\) iff no string \(L\)-separates \(s, s'\)

Myhill-Nerode Theorem

\(L\) is regular iff \(\sim^L\) has finitely many equivalence classes.

If so, these are the states of a DFA accepting \(L\) with fewest states.

- states \(s_L := \{s' \in \Sigma^* \mid s \sim^L s'\}\) with \(\epsilon_L\) initial
- transitions \(s_L \xrightarrow{a} (sa)_L\) for \(a \in \Sigma\)
L-inseparable histories

A DFA for \((0+1)^*1(0+1)^{n-1}\)

- state set \((0+1)^n\) with initial state \(q_0 = 0^n\)
- transitions \(s^j \rightarrow s^j\) [remember only last \(n\) bits]
- set \(1(0+1)^{n-1}\) of final states

Given a language \(L\) over an alphabet \(\Sigma\), and strings \(s, s' \in \Sigma^*\),

- a string \(r\) \(L\)-separates \(s, s'\) if exactly one of \(sr\) and \(s'r\) is in \(L\)
- \(s \sim^L s'\) iff no string \(L\)-separates \(s, s'\)

Myhill-Nerode Theorem

\(L\) is regular iff \(\sim^L\) has finitely many equivalence classes.

If so, these are the states of a DFA accepting \(L\) with fewest states.

- states \(s_L := \{ s' \in \Sigma^* \mid s \sim^L s' \}\) with \(\epsilon_L\) initial
- transitions \(s_L \xrightarrow{a} (sa)_L\) for \(a \in \Sigma\)
- \(s_L\) is final iff \(s \in L\)
Consider again the regular languages $L_n = (0 + 1)^*1(0 + 1)^{n-1}$.

Define a function $f_n : (0 + 1)^* \rightarrow (0 + 1)^n$ s.t. for $s \in (0 + 1)^*$,

$$s \sim^{L_n} f_n(s)$$

and for all $s' \in (0 + 1)^*$,

$$f_n(s) = f_n(s') \iff s \sim^{L_n} s'.$$
Exercise

Consider again the regular languages $L_n = (0 + 1)^*1(0 + 1)^{n-1}$.

Define a function $f_n : (0 + 1)^* \rightarrow (0 + 1)^n$ s.t. for $s \in (0 + 1)^*$,

$$s \sim_{L_n} f_n(s)$$

and for all $s' \in (0 + 1)^*$,

$$f_n(s) = f_n(s') \iff s \sim_{L_n} s'.$$

Hint: The $f_n(s)$’s are the states of a DFA accepting L_n.
Consider again the regular languages $L_n = (0 + 1)^* 1 (0 + 1)^{n-1}$.

Define a function $f_n : (0 + 1)^* \rightarrow (0 + 1)^n$ s.t. for $s \in (0 + 1)^*$,

$$s \sim^{L_n} f_n(s)$$

and for all $s' \in (0 + 1)^*$,

$$f_n(s) = f_n(s') \iff s \sim^{L_n} s'.$$

Hint: The $f_n(s)$’s are the states of a DFA accepting L_n.

How does this DFA compare to the determinization of the $(n + 1)$-state NFA accepting L_n given by the subset construction?
For finite automata, determinism can have exponential cost (L_n).

Satisfiability (SAT): Given a Boolean expression ϕ with variables X_1, \ldots, X_n, can we make ϕ true by assigning true/false to X_1, \ldots, X_n? Checking that a particular assignment makes ϕ true is easy (P). Non-determinism (guessing the assignment) puts SAT in NP. But is SAT in P? There are 2^n assignments to try.
From finite automata to Turing machines

For finite automata, determinism can have exponential cost (L_n).

For Turing machines (and time), many suspect this is also the case

$$\text{P} \neq \text{NP} \quad \text{[i.e., } \bigcup_{k \geq 1} \text{DTIME}(n^k) \neq \bigcup_{k \geq 1} \text{NTIME}(n^k)\text{]}$$

although settling $\text{P}=\text{NP}$ remains an open problem (the most celebrated in theoretical computer science).
From finite automata to Turing machines

For finite automata, determinism can have exponential cost \((L_n)\).

For Turing machines (and time), many suspect this is also the case

\[
P \neq NP
\]

although settling \(P=NP\) remains an open problem (the most celebrated in theoretical computer science).

Satisfiability (SAT):
Given a Boolean expression \(\varphi\) with variables \(X_1, \ldots, X_n\), can we make \(\varphi\) true by assigning true/false to \(X_1, \ldots, X_n\)?
From finite automata to Turing machines

For finite automata, determinism can have exponential cost (L_n).

For Turing machines (and time), many suspect this is also the case

$$P \neq NP$$

although settling $P=NP$ remains an open problem (the most celebrated in theoretical computer science).

Satisfiability (SAT): Given a Boolean expression φ with variables X_1, \ldots, X_n, can we make φ true by assigning true/false to X_1, \ldots, X_n?

Checking that a particular assignment makes φ true is easy (P).
From finite automata to Turing machines

For finite automata, determinism can have exponential cost (L_n).

For Turing machines (and time), many suspect this is also the case

\[P \neq NP \]

although settling $P=NP$ remains an open problem (the most celebrated in theoretical computer science).

Satisfiability (SAT):

Given a Boolean expression φ with variables X_1, \ldots, X_n, can we make φ true by assigning true/false to X_1, \ldots, X_n?

Checking that a particular assignment makes φ true is easy (P). Non-determinism (guessing the assignment) puts SAT in NP.
From finite automata to Turing machines

For finite automata, determinism can have exponential cost (L_n).

For Turing machines (and time), many suspect this is also the case

$$P \neq NP$$

although settling $P=NP$ remains an open problem (the most celebrated in theoretical computer science).

Satisfiability (SAT):
Given a Boolean expression φ with variables X_1, \ldots, X_n, can we make φ true by assigning true/false to X_1, \ldots, X_n?

Checking that a particular assignment makes φ true is easy (P). Non-determinism (guessing the assignment) puts SAT in NP.

But is SAT in P? There are 2^n assignments to try.