Recall that a *definite clause* is an atom (or fact) or a rule of the form

$$ h :- b_1, b_2, \ldots, b_m $$

where h and all b_i's are atoms. This homework focuses on definite clauses that are *propositional* in that all predicates have arity 0. (That is, there are no terms.) Let us agree to encode propositional clauses as lists, with an atom f encoded as $[f]$ and a rule $h :- b_1, \ldots, b_m$ as $[h, b_1, \ldots, b_m]$. A finite list of propositional clauses can then be encoded as a list of lists — e.g.

$$ h :- c. $$
$$ h :- f, g. $$
$$ f :- g. $$
$$ c :- f, h, a. $$
$$ g. $$

as $[[h, c], [h, f, g], [f, g], [c, f, h, a], [g]]$. The binary predicate

$$ \text{prove}(\text{Node}, \text{KB}) $$

below is an approach to calculating if all the clauses in Node are logical consequences of KB.

$$ \text{prove}([], \text{KB}). $$
$$ \text{prove}(\text{Node}, \text{KB}) :- \text{arc}(\text{Node}, \text{Next}, \text{KB}), \text{prove}(\text{Next}, \text{KB}). $$

$$ \text{arc}([H|T], N, \text{KB}) :- \text{member}([H|B], \text{KB}), \text{append}(B, T, N). $$

1. As claimed at lecture, the predicate prove above is not complete. In fact, given an atom g, there is a set KB of propositional definite clauses such that $\text{KB} \models g$ but not $\text{prove}([g], \text{KB})$. Give the simplest example of such a KB.

2. Define a predicate $\text{lc}(+\text{KB}, ?\text{C})$ in Prolog that collects in C all atoms that are logical consequences of KB, allowing us to check if an atom X is a logical consequence of KB through the predicate

$$ \text{query}(X, \text{KB}) :- \text{lc}(\text{KB}, \text{C}), \text{member}(X, \text{C}). $$

For example,

$$?- \text{lc}([[h, c], [h, f, g], [f, g], [c, f, h, a], [g]], \text{C}). $$
$$ \text{C} = [h, f, g] ? ; $$
$$ \text{no} $$

3. Extend $\text{query}(X, \text{KB})$ to definite clauses, defining a predicate

$$ \text{queryRule}(\text{List}, \text{KB}) $$
that is true precisely when the rule encoded by List is a logical consequence of KB.

Some runs to cover

```
| ?-  queryRule([a,b],[[a],[b,c]]).  yes  
| ?-  queryRule([b,a],[[a],[b,c]]).  no   
| ?-  queryRule([a,b],[[a,b,c],[c]]). yes  
| ?-  queryRule([a,d],[[a,b,c],[c]]). no   
| ?-  queryRule([a,b,c],[[a,d],[d,b,c]]). yes  
| ?-  queryRule([a,a],[[b],[c,b]]). yes   
```

4. Apply the tableau method on Description Logic to check if Pat knows a student that admires a non-student is entailed by the facts:

```
know(pat,ann)  
know(pat,bob)  
admire(ann,bob)  
admire(bob,chris)  
student(ann)  
¬ student(chris)
```