Finite-state transducers and regular relations

A finite-state transducer (FST) is a finite automaton with the labels on its transitions doubled and allowed to be ϵ, for a transition table $\delta \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times (\Sigma \cup \{\epsilon\}) \times Q$ with

$$\delta(q, x, x', q') \text{ written } q \xrightarrow{x:x'} q'.$$

The fst $\langle \rightarrow, F \rangle$ computes the relation

$$\{(x_1 \ldots x_n, x'_1 \ldots x'_n) \in \Sigma^* \times \Sigma^* \mid (\exists q_1 \ldots q_n) q_0 \xrightarrow{x_1:x'_1} q_1 \xrightarrow{x_2:x'_2} \ldots \xrightarrow{x_n:x'_n} q_n \in F\}.$$
Finite-state transducers and regular relations

A finite-state transducer (FST) is a finite automaton with the labels on its transitions doubled and allowed to be ϵ, for a transition table $\delta \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times (\Sigma \cup \{\epsilon\}) \times Q$ with

$$\delta(q, x, x', q') \text{ written } q \xrightarrow{x:x'} q'.$$

The fst $\langle \rightarrow, F \rangle$ computes the relation

$$\{((x_1 \ldots x_n, x'_1 \ldots x'_n) \in \Sigma^* \times \Sigma^* | (\exists q_1 \ldots q_n) \ q_0 \xrightarrow{x_1:x_1'} q_1 \xrightarrow{x_2:x_2'} q_2 \cdots \xrightarrow{x_n:x_n'} q_n \in F\}.$$

N.B. $x_1 \ldots x_n$ and $x'_1 \ldots x'_n$ may have different lengths, as an x_i and/or x'_i can be ϵ (of length 0).
Finite-state transducers and regular relations

A finite-state transducer (FST) is a finite automaton with the labels on its transitions doubled and allowed to be ϵ, for a transition table $\delta \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times (\Sigma \cup \{\epsilon\}) \times Q$ with

$$\delta(q, x, x', q')$$ written $q \xrightarrow{x:x'} q'$.

The fst $\langle \rightarrow, F \rangle$ computes the relation

$$\{(x_1 \ldots x_n, x'_1 \ldots x'_n) \in \Sigma^* \times \Sigma^* \mid (\exists q_1 \ldots q_n) \; q_0 \xrightarrow{x_1:x'_1} q_1 \xrightarrow{x_2:x'_2} q_2 \cdots \xrightarrow{x_n:x'_n} q_n \in F \}.$$

N.B. $x_1 \ldots x_n$ and $x'_1 \ldots x'_n$ may have different lengths, as an x_i and/or x'_i can be ϵ (of length 0).

A relation between strings is regular if it is computed by some fst.
Prolog exercise

Define
 \texttt{fst(+Input, +Trans, +Final, ?Output)}

\textbf{Caution:} consider \texttt{fst} computing $1 \times 1^+$ given by
 \begin{align*}
 \text{Trans} &= [[q0, [], 1, q0], [q0, 1, 1, q1]] \\
 \text{Final} &= [q1]
 \end{align*}

That is, the length n of a pair $(x_1 \ldots x_n, x'_1 \ldots x'_n)$ no longer bounds a run computing it.
Some regular relations

1. The factor relation

\[s \text{ hasFactor } s' \iff (\exists u, v) \ s = us'v \]
Some regular relations

1. The factor relation

 \(s \) hasFactor \(s' \) :\(\Leftrightarrow\) \((\exists u, v)\) \(s = us'v \)

2. The accepting runs of a finite automaton \(\rightarrow, F \)

 \[\{\langle a_1 a_2 \cdots a_n, q_1 q_2 \cdots q_n \rangle \mid q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} q_2 \cdots \xrightarrow{a_n} q_n \in F \} \]

 mixing symbols/actions \(a_i \) with states/situations \(q_i \)
Some regular relations

1. The *factor* relation

\[s \text{ hasFactor } s' \iff (\exists u, v) \ s = us'v \]

2. The *accepting runs of* a finite automaton \(\rightarrow, F \)

\[\{\langle a_1 a_2 \cdots a_n, q_1 q_2 \cdots q_n \rangle \mid q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} q_2 \cdots \xrightarrow{a_n} q_n \in F\} \]

mixing symbols/actions \(a_i \) with states/situations \(q_i \)

3. The *diagonal* \(\Delta_L \) of a regular language \(L \)

\[\Delta_L := \{(s, s) \mid s \in L\} \]
Some regular relations

1. The factor relation

 \[s \text{ hasFactor } s' \iff (\exists u, v) \ s = us'v \]

2. The accepting runs of a finite automaton \(\rightarrow, F \)

 \[
 \{ \langle a_1 a_2 \cdots a_n, q_1 q_2 \cdots q_n \rangle \mid q_0 \overset{a_1}{\rightarrow} q_1 \overset{a_2}{\rightarrow} q_2 \cdots \overset{a_n}{\rightarrow} q_n \in F \}
 \]

 mixing symbols/actions \(a_i \) with states/situations \(q_i \)

3. The diagonal \(\Delta_L \) of a regular language \(L \)

 \[
 \Delta_L := \{(s, s) \mid s \in L \}
 \]

4. A-string-meronym \(\geq_A \) on \((2^A)^*\)

 \[
 \alpha_1 \cdots \alpha_n \geq_A x_1 \cdots x_n \iff x_i = \epsilon \text{ or } x_i \subseteq \alpha_i \text{ for } 1 \leq i \leq n
 \]

 for \(\alpha_1 \cdots \alpha_n \in (2^A)^* \).
Some closure properties

1. If R is regular, so is its inverse R^{-1}.
Some closure properties

1. If R is regular, so is its inverse R^{-1}.
2. If R and R' are regular, so are its union $R \cup R'$ and relational composition

$$R; R' := \{(s, s') \mid (\exists s_0) \ sR s_0 \text{ and } s_0 R' s'\}.$$
Some closure properties

1. If R is regular, so is its inverse R^{-1}.
2. If R and R' are regular, so are its union $R \cup R'$ and relational composition

$$R; R' := \{(s, s') \mid (\exists s_0) \ sRs_0 \text{ and } s_0R's'\} .$$

3. The restriction R_L of a regular relation R to a regular language L

$$R_L := \{(s, s') \in R \mid s \in L\}$$
Some closure properties

1. If R is regular, so is its inverse R^{-1}.

2. If R and R' are regular, so are its union $R \cup R'$ and relational composition

 $$R; R' := \{(s, s') \mid (\exists s_0) \ sR s_0 \text{ and } s_0 R' s'\}.$$

3. The restriction R_L of a regular relation R to a regular language L

 $$R_L := \{(s, s') \in R \mid s \in L\}$$

If R is a regular relation, then its image $\{s' \mid (\exists s) \ sRs'\}$ is regular including

$$L \cap L' = image(\Delta_L; \Delta_{L'})$$

and the Peirce product

$$R^{-1}L := \{s \mid (\exists s' \in L) \ sRs'\} = image(R^{-1}_L)$$
Regular relations are not Boolean-closed

Regular relations are *not* closed under intersection —

\[
\{\langle 0^n, 1^n2^m \rangle \mid n \geq 0, m \geq 0 \} \text{ and } \{\langle 0^n, 1^m2^n \rangle \mid n \geq 0, m \geq 0 \}
\]

are regular, but their intersection has image \(\sum_{n \geq 0} 1^n2^n \).
Regular relations are not Boolean-closed

Regular relations are not closed under intersection —

\[
\{\langle 0^n, 1^n2^m \rangle \mid n \geq 0, m \geq 0\} \quad \text{and} \quad \{\langle 0^n, 1^m2^n \rangle \mid n \geq 0, m \geq 0\}
\]

are regular, but their intersection has image \(\sum_{n \geq 0} 1^n2^n\).

Hence, the complement \(\overline{R}\) of a regular relation \(R\) need not be regular, as

\[
R \cap R' = \overline{R \cup R'}
\]
TM-actions via finite-state transducers

moveRight\((q, a, q')\) \quad \vec{1}qla \vec{r} \rightsquigarrow \vec{1}laq' \vec{r}

moveLeft\((q, a, q')\) \quad \vec{1}a'qla \vec{r} \rightsquigarrow \vec{1}q'a'ar \vec{r}

write\((q, a, a', q')\) \quad \vec{1}qla \vec{r} \rightsquigarrow \vec{1}q'a' \vec{r}

For any Turing machine \(M\), step\(M\) is regular (finite tuples)
TM-actions via finite-state transducers

\[\text{moveRight}(q, a, q') \quad \vec{l}qar \sim \vec{l}aq'r \]

\[\text{moveLeft}(q, a, q') \quad \vec{l}a'qar \sim \vec{l}q'a'ar \]

\[\text{write}(q, a, a', q') \quad \vec{l}qar \sim \vec{l}q'a'r \]

tape infinite to the right \(\vec{l}q \approx \vec{l}q\# \)

tape infinite to the left \(q\vec{r} \approx \#q\vec{r} \)
TM-actions via finite-state transducers

moveRight\((q, a, q')\) \(\vec{l}qa\vec{r} \sim \vec{l}aq'\vec{r}\)

moveRight\((q, \#, q')\) \(\vec{l}q \sim \vec{l}\#q'\)

moveLeft\((q, a, q')\) \(\vec{l}a'qa\vec{r} \sim \vec{l}q'a'ar\)

moveLeft\((q, a, q')\) \(qa\vec{r} \sim q'#a\vec{r}\)

moveLeft\((q, \#, q')\) \(\vec{l}aq \sim \vec{l}q'a\)

moveLeft\((q, \#, q')\) \(q \sim q'\)

write\((q, a, a', q')\) \(\vec{l}qa\vec{r} \sim \vec{l}q'a'\vec{r}\)

write\((q, \#, a, q')\) \(\vec{l}q \sim \vec{l}q'a\)

tape infinite to the right \(\vec{l}q \approx \vec{l}q\#\)

tape infinite to the left \(q\vec{r} \approx \#q\vec{r}\)
TM-actions via finite-state transducers

\[
\begin{align*}
\text{moveRight}(q, a, q') & \quad \vec{l} q a \vec{r} \rightsquivalence \vec{l} a q' \vec{r} \\
\text{moveRight}(q, \#, q') & \quad \vec{l} q \rightsquivalence \vec{l} \# q' \\
\text{moveLeft}(q, a, q') & \quad \vec{l} a' q a \vec{r} \rightsquivalence \vec{l} q' a' a \vec{r} \\
\text{moveLeft}(q, a, q') & \quad q a \vec{r} \rightsquivalence q' \# a \vec{r} \\
\text{moveLeft}(q, \#, q') & \quad \vec{l} a q \rightsquivalence \vec{l} q' a \\
\text{moveLeft}(q, \#, q') & \quad q \rightsquivalence q' \\
\text{write}(q, a, a', q') & \quad \vec{l} q a \vec{r} \rightsquivalence \vec{l} q' a' \vec{r} \\
\text{write}(q, \#, a, q') & \quad \vec{l} q \rightsquivalence \vec{l} q' a \\
\text{tape infinite to the right} & \quad \vec{l} q \approx \vec{l} q \# \\
\text{tape infinite to the left} & \quad q \vec{r} \approx \# q \vec{r}
\end{align*}
\]

For any Turing machine \(M \), \(\text{step}_M \) is regular (finite tuples)
Finite-state approximations

Output extraction \sim via finite-state transducer

$$\text{halt}(q, a) \quad \overrightarrow{\quad} \text{unpad}(\overrightarrow{\quad})$$

$$\text{halt}(q, \#) \quad \overrightarrow{\quad} \text{unpad}(\overrightarrow{\quad})$$

n-step approximation of a TM M

$$M_n := \{(s, s') | q_0s \overset{\text{step}^n_M}{\sim} s'\}$$

$$(\exists x) \ q_0s \overset{\text{step}^n_M}{\sim} x \text{ and } x \sim s'$$

Bounded iterations (time-out clock) are regular

$$\text{input/output}(M) = \bigcup_{n \geq 0} M_n$$