So having stated the motivation for working on AI and the challenges, how should we actually make progress?

Given a complex real-world task, at the end of the day, we need to write some code (and possibly build some hardware too). But there is a huge chasm between the real-world task and code.

A useful paradigm for solving complex tasks is to break them up into two stages. The first stage is modeling, whereby messy real-world tasks are converted into clean formal tasks called models. The second stage is algorithms, where we find efficient ways to solve these formal tasks.

Example

Formal task:
- **Input**: list \(L = [x_1, \ldots, x_n] \) and a function \(f: \mathbb{X} \rightarrow \mathbb{R} \)
- **Output**: \(k \) highest-scoring elements

Example (\(k = 2 \)):
\[
L: A \quad B \quad C \quad D \\
f: 3 \quad 2 \quad 7 \quad 1
\]

Two algorithms:
- Scan through to find largest, scan through again to find the second largest, etc.
- Sort \(L \) based on \(f \), return first \(k \) elements
So having stated the motivation for working on AI and the challenges, how should we actually make progress?

Given a complex real-world task, at the end of the day, we need to write some code (and possibly build some hardware too). But there is a huge chasm between the real-world task and code.

A useful paradigm for solving complex tasks is to break them up into two stages. The first stage is **modeling**, whereby messy real-world tasks are converted into clean formal tasks called models. The second stage is **algorithms**, where we find efficient ways to solve these formal tasks.

Example ($k = 2$):

$\text{L} : \text{A B C D}$

$\text{f} : 3 2 7 1$

Two algorithms:

• Scan through to find largest, scan through again to find the second largest, etc.

• Sort L based on f, return first k elements

When you study algorithms, you are generally given a well-defined formal task, something specified with mathematical precision, and your goal is to solve the task. A solution either solves the formal task or it doesn't, and in general, there are many possible solutions with different computational trade-offs.

As an example, suppose you wanted to find the k largest elements in a list of $\text{L} = [x_1, \ldots, x_n]$ according to given a scoring function f that maps each element into a real-valued score.
How?

Real-world task

• So having stated the motivation for working on AI and the challenges, how should we actually make progress?

• Given a complex real-world task, at the end of the day, we need to write some code (and possibly build some hardware too). But there is a huge chasm between the real-world task and code.

Paradigm

Real-world task

Modeling

Formal task (model)

Algorithms

Program

• A useful paradigm for solving complex tasks is to break them up into two stages. The first stage is modeling, whereby messy real-world tasks are converted into clean formal tasks called models. The second stage is algorithms, where we find efficient ways to solve these formal tasks.

• As an example, suppose you wanted to find the k largest elements in a list of $L = [x_1, \ldots, x_n]$ according to given a scoring function f that maps each element into a real-valued score.

• Solving a formal task involves coming up with increasingly more efficient algorithms for solving the task.

Church-Turing thesis: Program \approx Turing machine

finite action control

\[\cdots \# \# a_1 a_2 \cdots a_n \# \# \cdots \]

input & output symbols
Finite state machine (fsm)

Formally, a finite state machine (FSM) M is a triple $\langle \text{Trans}, \text{Final}, Q_0 \rangle$ where:

- Trans is a list of triples $[Q, X, Q_n]$ such that M may, at state Q, see symbol X and change state to Q_n.
- Final is a list of M’s final (i.e., accepting) states.
- Q_0 is M’s initial state.

Example:

$\text{Trans} = \{[q_0, a, q_0], [q_0, b, q_1], [q_1, b, q_1]\}$

$\text{Final} = \{q_1\}$

$Q_0 = q_0$
A **fsm** M is a triple $[\text{Trans}, \text{Final}, \text{Q0}]$ where

- **Trans** is a list of triples $[Q,X,Q_n]$ such that M may, at state Q seeing symbol X, change state to Q_n
- **Final** is a list of M’s final (i.e. accepting) states
- **Q0** is M’s initial state.

E.g. $\text{Trans} = [[q0,a,q0],[q0,b,q1],[q1,b,q1]]$

$\text{Final} = [q1]$

$Q0 = q0$
From strings to fsm’s

Encode strings as lists; e.g. 102 as \([1, 0, 2]\).
From strings to fsm’s

Encode strings as lists; e.g. 102 as \([1, 0, 2]\).
From strings to fsm’s

Encode strings as lists; e.g. 102 as [1,0,2].

% string2fsm(+String, ?TransitionSet, ?FinalStates)
string2fsm([], [], [q0]).
string2fsm([H|T], Trans, [Last]) :-
 mkTL(T, [H], [[q0, H, [H]]], Trans, Last).

% mkTL(+More, +LastSoFar, +TransSoFar, ?Trans, ?Last)
mkTL([], L, Trans, Trans, L).
mkTL([H|T], L, TransSoFar, Trans, Last) :-
 mkTL(T, [H|L], [[L,H,[H|L]]|TransSoFar], Trans, Last).
From strings to fsm's

Encode strings as lists; e.g. 102 as \([1, 0, 2]\).

% string2fsm(+String, ?TransitionSet, ?FinalStates)
string2fsm([], [], [q0]).
string2fsm([H|T], Trans, [Last]) :-
 mkTL(T, [H], [[q0, H, [H]]], Trans, Last).

% mkTL(+More, +LastSoFar, +TransSoFar, ?Trans, ?Last)
mkTL([], L, Trans, Trans, L).
mkTL([H|T], L, TransSoFar, Trans, Last) :-
 mkTL(T, [H|L], [[L,H,[H|L]]|TransSoFar], Trans, Last).

States as histories (in reverse)
Exercise

Define a 4-ary predicate

\[
\text{accept}(\text{+Trans}, \text{+Final}, \text{+Q0}, \text{?String})
\]

that is true exactly when \([\text{Trans}, \text{Final}, \text{Q0}]\) is a fsm that accepts \text{String} (encoded as a list).
Exercise

Define a 4-ary predicate

\[
\text{accept}(\text{+Trans}, \text{+Final}, \text{+Q0}, \text{?String})
\]

that is true exactly when \([\text{Trans}, \text{Final}, \text{Q0}]\) is a fsm that accepts \(\text{String}\) (encoded as a list).

That is, write a Prolog program to answer queries such as

\[
|?- \text{accept}([[q0,0,q1],[q0,1,q1],[q1,0,q0],[q1,1,q0]], [q1], q0, [1,0,0]).
\]

yes
Exercise

Define a 4-ary predicate

\[
\text{accept}(\text{++Trans,+Final,+Q0,?String})
\]

that is true exactly when \([\text{Trans,Final,Q0}]\) is a fsm that accepts \text{String} (encoded as a list).

That is, write a Prolog program to answer queries such as

\[
|\text{- accept}([[[q0,0,q1],[q0,1,q1],[q1,0,q0],[q1,1,q0]]],
[q1], q0, [1,0,0])\).
\]

\text{yes}

test(String) :- string2fsm(String, Trans, Final),
accept(Trans, Final, q0, String).