soundness and completeness

Recall that g is a logical consequence of KB, $KB \models g$, precisely if g is true in all models of KB.

Let \vdash be a mechanical procedure for deriving a formula g from a knowledge base KB, written $KB \vdash g$.

\vdash is sound if $KB \models g$ whenever $KB \vdash g$.

\vdash is complete if $KB \vdash g$ whenever $KB \models g$.
Soundness and completeness

Recall that g is a logical consequence of KB, $KB \models g$, precisely if g is true in all models of KB.

Let \vdash be a mechanical procedure for deriving a formula g from a knowledge base KB, written $KB \vdash g$.

\vdash is sound if $KB \models g$ whenever $KB \vdash g$.

\vdash is complete if $KB \vdash g$ whenever $KB \models g$.

Two extreme examples:

(1) $KB \vdash g$ for no g sound
Soundness and completeness

Recall that g is a *logical consequence of* KB, $KB \models g$, precisely if g is true in all models of KB.

Let \vdash be a mechanical procedure for deriving a formula g from a knowledge base KB, written $KB \vdash g$.

\vdash is *sound* if $KB \models g$ whenever $KB \vdash g$.

\vdash is *complete* if $KB \vdash g$ whenever $KB \models g$.

Two extreme examples:

(1) $KB \vdash g$ for no g

sound

(2) $KB \vdash g$ for all g

complete
Soundness and completeness

Recall that g is a logical consequence of KB, $KB \models g$, precisely if g is true in all models of KB.

Let \vdash be a mechanical procedure for deriving a formula g from a knowledge base KB, written $KB \vdash g$.

\vdash is sound if $KB \models g$ whenever $KB \vdash g$.

\vdash is complete if $KB \vdash g$ whenever $KB \models g$.

Two extreme examples:

(1) $KB \vdash g$ for no g \hspace{1cm} ‘say nothing’ undergenerates sound
(2) $KB \vdash g$ for all g \hspace{1cm} ‘say everything’ overgenerates complete
Propositional KBs

Recall

\[
\begin{align*}
i & : - p, q. \\
i & : - r. \\
p. \\
r.
\end{align*}
\]

Let \(\text{KB} \vdash G \iff \text{prove([G],KB)} \)

Claim

(1) \(\vdash \) is sound (proved by induction)

(2) \(\vdash \) is not complete (homework question)
Propositional KBs

Recall

\[
i :- p,q.
\]

\[
i :- r.
\]

KB = \[[i,p,q],[i,r],[p],[r]\]

arc([H|T],N,KB) :- member([H|B],KB), append(B,T,N).

prove([],KB).

prove(Node,KB) :- arc(Node,Next,KB), prove(Next,KB).
Propositional KBs

Recall

\[i : - p,q. \]
\[i : - r. \]
\[KB = \{[i,p,q],[i,r],[p],[r]\} \]

arc([H|T],N,KB) :- member([H|B],KB), append(B,T,N).

\[p. \]
\[r. \]

prove([],KB).

prove(Node,KB) :- arc(Node,Next,KB), prove(Next,KB).

Let

\[KB \vdash G \iff \text{prove}([G],KB) \]

Claim

(1) \vdash \text{is sound} \quad \text{(proved by induction)}

(2) \vdash \text{is } not \text{ complete} \quad \text{(homework question)}
Logical consequences bottom-up

\[C_0 := \emptyset \]

\[C_{n+1} := \{ H \mid (\text{for some } B \subseteq C_n) \text{ member } ([H|B], KB) \} \]

\[C := \bigcup_{n \geq 0} C_n \]

\[= \bigcup_{n \leq k} C_n \quad \text{where } k = \text{number of clauses in } KB \]
Logical consequences bottom-up

\[C_0 := \emptyset \]
\[C_{n+1} := \{ H \mid (\text{for some } B \subseteq C_n) \text{ member}([H|B], KB) \} \]
\[C := \bigcup_{n \geq 0} C_n \]
\[= \bigcup_{n \leq k} C_n \quad \text{where } k = \text{number of clauses in } KB \]

\[
\begin{align*}
 i & :- p, q. \\
 i & :- r. \\
p & . \\
r & .
\end{align*}
\]

\[KB = [[i,p,q],[i,r],[p],[r]] \]

\[\text{arc}([H|T], N, KB) :- \text{member}([H|B], KB), \]
\[\text{append}(B, T, N). \]

\[C_1 = \{p, r\} \]
\[C_2 = \{p, r, i\} = C_n \text{ for } n \geq 2 \]
A 0-ary predicate p is interpreted by $I = \langle D, \phi, \pi \rangle$ as

\[\pi(p) : D^0 \rightarrow \{\text{true, false}\}. \]
Substitutions and instances

A 0-ary predicate p is interpreted by $I = \langle D, \phi, \pi \rangle$ as

$$\pi(p) : D^0 \to \{\text{true}, \text{false}\}.$$

Let K be a set of constants.

A K-substitution is a function from a finite set of variables to K — i.e. a set $\{V_1/c_1, \ldots, V_n/c_n\}$ of $c_i \in K$ and distinct variables V_i.

The application $e\theta$ of a K-substitution $\theta = \{V_1/c_1, \ldots, V_n/c_n\}$ to a clause e is e with each V_i replaced by c_i.

e.g. $p(Z, U, Y, a, X)\{X/b, U/a, Z/b\} = p(b, a, Y, a, b)$.

A K-instance of e is $e\theta$ for some K-substitution θ.

Given a set B of clauses and a K-substitution θ, let

$$B\theta := \{e\theta \mid e \in B\}.$$
Bottom-up with substitutions

If KB has constants from some non-empty finite set K, let

$$C^K_0 := \emptyset$$

$$C^K_{n+1} := \{ H\theta \mid \theta \text{ is a } K\text{-substitution s.t. } B\theta \subseteq C^K_n \text{ for some } B \text{ s.t. } \text{member}([H|B], KB) \}$$

$$C^K := \bigcup_{n \geq 0} C^K_n$$
Bottom-up with substitutions

If KB has constants from some non-empty finite set K, let

$$
\begin{align*}
C_0^K & := \emptyset \\
C_{n+1}^K & := \{ H\theta \mid \theta \text{ is a } K\text{-substitution s.t. } B\theta \subseteq C_n^K \\
& \quad \text{for some } B \text{ s.t. } \text{member}([H|B], KB) \}
\end{align*}
$$

$$
C^K := \bigcup_{n \geq 0} C_n^K
$$

E.g. for $KB = [[[p(a, b)]], [q(X), p(X, Y)]]$ and $K = \{a, b\}$,

$$
\begin{align*}
C_1^K & = \{p(a, b)\} \\
C_2^K & = \{p(a, b), q(a)\} = C^K
\end{align*}
$$
Soundness & completeness via Herbrand

The Herbrand interpretation of a set KB of clauses with constants from a non-empty set K is the triple $I = \langle D, \phi, \pi \rangle$ where

- the domain D is the set K of constants
- ϕ is the identity function on K (each constant in K refers to itself)
- for each n-ary p and n-tuple $c_1 \ldots c_n$ from K,

$$\pi(p)(c_1 \ldots c_n) = \text{true} \iff p(c_1 \ldots c_n) \in C^K$$
Soundness & completeness via Herbrand

The Herbrand interpretation of a set KB of clauses with constants from a non-empty set K is the triple $I = \langle D, \phi, \pi \rangle$ where

- the domain D is the set K of constants
- ϕ is the identity function on K (each constant in K refers to itself)
- for each n-ary p and n-tuple $c_1 \ldots c_n$ from K,

$$\pi(p)(c_1 \ldots c_n) = \text{true} \iff p(c_1 \ldots c_n) \in C^K$$

Fact. I is a model of KB, and every clause true in I is true in every model of KB (interpreting constants in K).
Soundness & completeness via Herbrand

The **Herbrand interpretation** of a set KB of clauses with constants from a non-empty set K is the triple $I = \langle D, \phi, \pi \rangle$ where

- the domain D is the set K of constants
- ϕ is the identity function on K (each constant in K refers to itself)
- for each n-ary p and n-tuple $c_1 \ldots c_n$ from K,

\[\pi(p)(c_1 \ldots c_n) = \text{true} \iff p(c_1 \ldots c_n) \in C^K \]

Fact. I is a model of KB, and every clause true in I is true in every model of KB (interpreting constants in K).

Corollary. The bottom-up procedure with substitutions is sound and complete (for Datalog).