Finite-state methods for sub-atomic semantics

3. A finite-state perspective on tense & aspect

Tim Fernando
ESSLLI 2015, Barcelona

Key phrases:
telic, durative, Aktionsart, imperfective, segmented, whole, incremental change, force and inertia

Could tense & aspect be finite-state?

Were it left to semantics, YES.

At least for Priorean tense logic extended with

Intervals (Bennett & Partee 1972, Dowty 1979)

Temp Parameters E, S, R (Reichenbach), ... (DRT ...)

Events, Panini-Ramsey-Davidson Hypothesis (Parsons 1990)

Yesterday
- MSOΣ with models in $(2^\Sigma)^+$ & intervals in strings (Allen, RWK)

Monday
- from intervals to strings, under Dowty’s aspect hypothesis

Σ can always be expanded to a larger finite set
Main challenge: events

Parsons 1990

the Panini-Ramsey-Davidson hypothesis that English sentences of the simplest sort contain some underlying reference to (quantification over) events or states.

Davidson 1970

an ontology of events as unrepeatable particulars ("concrete individuals")

Finite-state claim
- these events be analyzed, *up to bounded granularity* Σ, as runs of finite automata
- the semantics of tense & aspect is finite-state approximable
- the finite-state approximations are what count

Events as truthmakers (if not denotations)

Davidson 1967

(7) *Amundsen flew to the North Pole in May 1926.*

(7) ... *does not describe any event at all. But if (7) is true, then there is an event that makes it true.*

$\exists x \text{ Flew(Amundsen, } x) \land \text{To(NorthPole, } x) \land \text{In(May1926, } x)\text{ }$

Aim: encode index as a string i to feed into a binary relation $R[\varphi]$ on strings s.t.

$$i \models \varphi \iff i \in \text{domain}(R[\varphi])$$

without insisting that $R[\varphi]$ be deterministic — i.e., there may be more than one string in the set

$$\{ e \mid i \ R[\varphi] \ e \}$$

described by φ at i.
From intervals to strings

Krifka 1998

One and the same event of running can be described by running (i.e. by an atelic predicate) or by running a mile (i.e. a telic, or delimited, predicate).

Searle 1978

The world doesn't come to us already sliced up into objects and experiences ... the world divides the way we divide it.

Segment an interval \(I \) into a string \(I_1 \cdots I_n \) of subintervals with

\[
I_1 \cdots I_n \models \alpha_1 \cdots \alpha_m \quad \text{iff} \quad n = m \quad \text{and for } 1 \leq i \leq n \quad \text{and } \varphi \in \alpha_i, \\
I_i \models \varphi \\
\text{iff} \quad \Delta_\Sigma(I_1 \cdots I_n) \supseteq \alpha_1 \cdots \alpha_m
\]

where \(\alpha_i \subseteq \Sigma \) for all \(1 \leq i \leq m \).

Aktionsart in strings

Claim. Telicity and durativity concern string representations over and above timelines (\(\models \) on fluents).

\(\alpha_1 \cdots \alpha_n \) is telic if there is some \(\varphi \) in \(\alpha_n \) such that the negation \(\neg \varphi \) of \(\varphi \) appears in \(\alpha_i \) for \(1 \leq i < n \)

Mary ran to post-office \(\varphi = \text{at(mary,post-office)} \) not quantized (Krifka)

\(\alpha_1 \cdots \alpha_n \) is durative if its length \(n \) is \(\geq 3 \).

<table>
<thead>
<tr>
<th></th>
<th>non-durative</th>
<th>durative</th>
</tr>
</thead>
<tbody>
<tr>
<td>−tel</td>
<td>semelfactive</td>
<td>activity</td>
</tr>
<tr>
<td>telic</td>
<td>achievement</td>
<td>accomplishment</td>
</tr>
</tbody>
</table>
Subsumption \triangleright and superposition &

$$\alpha_1 \cdots \alpha_n \triangleright \beta_1 \cdots \beta_m$$ iff $n = m$ and $\alpha_i \supseteq \beta_i$ for $1 \leq i \leq n$

$$s \triangleright L$$ iff $(\exists s' \in L) s \triangleright s'$

so that s is durative iff $s \triangleright \square^+$
and telic iff $s \triangleright \neg \square^+ \varphi$ for some φ.

$$\alpha_1 \cdots \alpha_n \& \beta_1 \cdots \beta_n = (\alpha_1 \cup \beta_1) \cdots (\alpha_n \cup \beta_n)$$

$L \& L' = \{s \& s' \mid s \in L, s' \in L' \text{ and } \text{length}(s) = \text{length}(s')\}$

durative strings in L
$$\text{dur}(L) = L \& \square^+$$
$$= \{s \in L \mid s \triangleright \square^+\}$$

cul(L, φ)
$$= L \& \neg \square^+ \varphi \triangleright \neg \square^+ \varphi$$

Dowty's aspect hypothesis

statives $+$ DO, BECOME, CAUSE . . .

A rough event approximation from Rothstein 2004

activities \[\lambda e.(\text{DO}(\varphi))(e)\]

achievements \[\lambda e.(\text{BECOME}(\varphi))(e)\]

accomplishments \[\lambda e.\exists e'[(\text{DO}(\varphi))(e') \land e = e' \cup_s \text{Cul}(e)]\]

<table>
<thead>
<tr>
<th>DO / dur</th>
<th>DO / dur</th>
</tr>
</thead>
<tbody>
<tr>
<td>BECOME / cul</td>
<td>semelfactive</td>
</tr>
<tr>
<td>achievement</td>
<td>accomplishment</td>
</tr>
<tr>
<td>durative</td>
<td>durative</td>
</tr>
</tbody>
</table>
A minimal account

state φ pointwise fluent

achievement $\neg \varphi \varphi$ $\text{cul}(\emptyset, \varphi)$

semelfactive $L \& \emptyset$ $f r_f$

activity $\text{dur}(L)$ $f f, r_f r_f$

accomplishment $\text{cul}(\text{dur}(L), \varphi)$ $f, \neg \varphi f, r_f, \neg \varphi r_f, \varphi$

(1) $L = \overline{f f, r_f} \overline{r_f} = \text{iter}(\overline{f r_f})$
(2) $s \beta ; \alpha s' := s(\beta \cup \alpha)s'$
(3) $L; L' := \{s; s' | s \in L - \{\epsilon\} \text{ and } s' \in L' - \{\epsilon\}\}$
(4) $\text{iter}(L) := (\text{least } Z \supseteq L) Z; L \subseteq Z$

Statives are segmented

Stative φ: $I \models \varphi$ iff $(\forall t \in I) \{t\} \models \varphi$

(1) $\varphi \underbrace{\text{Ed slept from 3 to 6}}_{I} \models \varphi \underbrace{\text{Ed slept from 3 to 5}}_{I'}$

for all intervals I and I',

$I \models \varphi$ and $I' \subseteq I$ implies $I' \models \varphi$

(2) $\text{Ed slept from 3 to 5pm, Ed slept from 4 to 6pm}$

$\models \text{Ed slept from 3 to 6pm}$

φ is segmented if for all intervals I and I' s.t. $I \cup I'$ is an interval,

$I \models \varphi$ and $I' \models \varphi$ iff $I \cup I' \models \varphi$.
From segmented to whole fluents

ϕ is whole if for all intervals I and I’ s.t. \(I \cup I' \) is an interval,

\[I \models \varphi \text{ and } I' \models \varphi \implies I = I'. \]

Useful for an event described by ϕ

\[I \models \varphi \iff I \text{ is the time of a } \varphi\text{-event} \]

Identify an interval J with the fluent naming it

\[I \models J \iff I = J \]

contra “ϕ-segment”

\[I \models \varphi_o \iff (\exists I' \supseteq I) I' \models \varphi \]

Fact. ϕo is segmented if ϕ is whole

Imperfectives vs perfectives

<table>
<thead>
<tr>
<th>whole</th>
<th>count</th>
<th>perfective</th>
</tr>
</thead>
<tbody>
<tr>
<td>segmented</td>
<td>mass</td>
<td>imperfective</td>
</tr>
</tbody>
</table>

perfective: viewed from outside, completed, closed

\[
\begin{array}{c|c|c}
V_o & E, V_o & V_o \\
\end{array}
\]

imperfective: viewed from inside, ongoing, open-ended

\[
\begin{array}{c|c|c}
E_o & V, E_o & E_o \\
\end{array}
\]

\[I \text{ inside } I' \iff (\exists t \in I') \{t\} < I \text{ and } (\exists t' \in I') I < \{t'\} \]

For intervals E and V,

\[(\exists I) I \models \begin{array}{c|c|c}
E_o & E_o, V & E_o \\
\end{array} \iff V \text{ inside } E \]
Segmenting the segmented

φ is segmentable as L if for all segs \(I_1 \cdots I_n \),

\[
\bigcup_{i=1}^{n} I_i \models \phi \quad \text{iff} \quad I_1 \cdots I_n \models L
\]

Extend \(\models \) to a language \(L \) (set of strings) disjunctively

\(\| \models L \quad \text{iff} \quad (\exists s \in L) \| \models s. \)

Fact. The following three conditions are equivalent.

(i) \(\phi \) is segmented

(ii) \(\phi \) is segmentable as

\[
\phi^+ = \phi + \phi \phi + \phi \phi \phi + \cdots
\]

(iii) \(\phi \) is segmentable as \(\phi \circ \).

Segmenting the whole

Fact. The following are equivalent.

(i) \(\phi \) is whole

(ii) there is no seg \(\| \) such that \(\| \models \phi \circ + \phi \circ \phi \)

(iii) \(\phi \) is segmentable as

\[
[\phi \circ, \neg\langle m \rangle \phi \circ, \neg\langle m \rangle \phi \circ] + [\phi \circ, \neg\langle m \rangle \phi \circ] \phi \circ + \phi \circ \phi \circ \phi \circ
\]

where \(m \) is meet and \(m_i \) is its inverse

\(l m l' \quad \text{iff} \quad l \cup l' \in \text{lvl} \) and \(l < l' \)

\(l m_i l' \quad \text{iff} \quad l' m l \)

Fact. The map \(\phi \mapsto \phi \circ \) is the right adjoint in an adjunction between a universal grinder & universal packager.

Whole implies quantized (Krifka), but converse fails.
Constraints

Let

\[s \text{ has-factor } s' \text{ iff } (\exists u, v) \ s = us'v. \]

\[\langle R \rangle L = \{ s \mid (\exists s' \in L) \ sRs' \} \]

\[\text{counterEx}(L \Rightarrow L') = \langle \text{has-factor} \rangle (\langle \Rightarrow \rangle L \cap \langle \Rightarrow \rangle L') \]

\[L \Rightarrow L' = \langle \text{has-factor} \rangle (\langle \Rightarrow \rangle L \cap \langle \Rightarrow \rangle L') \]

E.g. \[\varphi \Rightarrow \varphi = \{ \alpha_1 \cdots \alpha_n \mid \text{whenever } \varphi \in \alpha_i, \ \varphi \in \alpha_{i+1} \]

\[\text{for } 1 \leq i < n \}

Inertial statives

Pat stopped the car before it hit the tree.

Statives persist forward and backward unless forced otherwise

\[\varphi \Rightarrow \varphi + f\neg\varphi \]

\[\neg\varphi \Rightarrow \varphi + f\varphi \]

Forces succeed unless opposed

\[f\varphi \Rightarrow \varphi + f\neg\varphi \]

Refine with forces

\[\text{cul}_f(L, \varphi) = L & \neg\varphi, \neg\varphi, f\varphi \]

\[\text{dur}^\uparrow(\varphi) = \uparrow\varphi, \uparrow\varphi, \uparrow\varphi \]
Incremental change

Refine bivalent φ with degrees d

\[
\begin{align*}
 d\varphi & : \quad d \leq \varphi\text{-degree} & \quad \downarrow \varphi & : \quad f\neg d\varphi \quad \text{(same for all } d\text{'s)} \\
 \varphi d & : \quad \varphi\text{-degree} \leq d & \quad \uparrow \varphi & : \quad fd\varphi \quad \text{(same for all } d\text{'s)}
\end{align*}
\]

\[
\begin{align*}
 d\varphi & \Rightarrow \frac{d\varphi}{d\varphi} + \frac{\downarrow \varphi}{\downarrow \varphi} \\
 \frac{d\varphi}{d\varphi} \Rightarrow \frac{d\varphi}{d\varphi} + \frac{\uparrow \varphi}{\uparrow \varphi} \\
 \frac{\uparrow \varphi, d\varphi}{d\varphi} \Rightarrow \frac{\neg d\varphi + \downarrow \varphi}{\neg d\varphi + \downarrow \varphi}
\end{align*}
\]

\[
\begin{align*}
 \varphi d & \Rightarrow \frac{\varphi d}{\varphi d} + \frac{\uparrow \varphi}{\uparrow \varphi} \\
 \frac{\varphi d}{\varphi d} \Rightarrow \frac{\varphi d}{\varphi d} + \frac{\downarrow \varphi}{\downarrow \varphi} \\
 \frac{\downarrow \varphi, \varphi d}{\varphi d} \Rightarrow \frac{\neg d\varphi + \uparrow \varphi}{\neg d\varphi + \uparrow \varphi}
\end{align*}
\]

Refrinements with force

Comrie 1976

With a state, unless something happens to change that state, then the state will continue ... With a dynamic situation, on the other hand, the situation will only continue if it is continually subject to a new input of energy.

[= force, Copley & Harley 2012]

E.g. rise in φ-degree, $\varphi:\ (\exists d)\ d\varphi \land \text{Prev } \neg d\varphi$

\[
dur_{\uparrow}(\varphi) = \frac{\uparrow \varphi}{\uparrow \varphi}, \frac{\uparrow \varphi}{\uparrow \varphi} + \frac{\uparrow \varphi}{\uparrow \varphi} \quad \text{(bc length } \geq 3)
\]

force fluent $\uparrow \varphi$

\[
\begin{align*}
 \text{cul}_f(L, \psi) = L \& \neg \psi^* \neg \psi, f\psi \psi
\end{align*}
\]
Continuous change

soup cool in an hour: \[x, d \leq sDg \quad d \leq sDg \quad \text{hour}(x), sDg < d \]

\[=_{bc} \quad d \leq sDg \quad sDg < d \quad \& \quad x \quad \text{hour}(x) \]

\[I \models d \leq sDg \quad \text{iff} \quad (\forall r \in I) \quad d \leq sDg(r) \]

soup cool for an hour: \[x \quad [\Box]sDg_{\downarrow} \quad \text{hour}(x), [\Box]sDg_{\downarrow} \]

\[=_{bc} \quad [\Box]sDg_{\downarrow} \quad \& \quad x \quad \text{hour}(x) \]

\[sDg_{\downarrow} := \exists x (sDg < x \quad \& \quad \text{Prev}(x \leq sDg)) \]

\[I \models [\Box]\varphi \quad \text{iff} \quad (\forall I' \subseteq I) \quad I' \models \varphi \]

Addendum to: No time without change

No change unless observed
in a fluent \(\varphi \) from a finite set \(A \) fixing granularity \((\rho_A, bc)\)

Add fluents for
- degrees (incremental change)
- forces (inertia)

No change (in inertial fluents) unless forced

Forces as finite automata / frames

Derive world-time pairs from runs of

many automata, only partially known, on different clocks