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Methodological considerations I

Background.

Minimally: semantics as a (partial) function

from (structured) expressions to ‘meanings’.
w:kE— M

synonymy: p =, ¢ iff u(p) and p(q) both de-
fined and p(p) = u(q).

The ‘Principle’.

PoC is a property of p (or of =,):

“The meaning of a complex expression is deter-
mined by the meanings of its parts and the mode

of composition”.
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Contents of Part I '

e Methodological considerations.

— ‘The Principle of Compositionality’
(PoC); core version and extras.

— Is PoC empty? Just methodological?
— The point of an abstract PoC.

e Choice of framework
— The Montague/Janssen/Hendriks tradi-
tion versus Hodges.
e Some mathematics of compositionality.
— The framework.

— The Husserl property and Fregean exten-
sions: Hodges’ theorem.

— Other extension theorems.
e Other applications.
e PoC and Frege’s Context Principle.

e PoC and ambiguity: relational semantics.
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e (Rule version, Rule(u)) For each syntactic
rule «a there is a semantic operation r, such
that (whenever a(ps,...,pn) is meaningful)

(i, pn)) =ra((p1)s- - 1(pn))

o (Substitution version, Comp(=,)) Substi-
tuting constituents of a meaningful expres-
sion for synonymous ones yields a synony-

mous expression (if meaningful).

Note:

e Constituents are taken to be immediate in
Rule(p), but not necessarily in Comp(=,,).

e Rule(y), but not Comp(=,), presup-
poses the Domain Rule (DR): Constituents
of meaningful expressions are themselves
meaningful.

e So PoC makes sense even without DR. But
given DR, Rule(x) and Comp(=,,) are taken
to be equivalent (relative to some suitable
precise notion of structured expression, i.e.,

of a grammar).
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We can think of Rule(y) or Comp(=,) as the
core content of PoC. Most other versions in the

literature consist of PoC + extra requirements:

Extras:

e Requirements of accessibility of p to hu-
man minds, so that PoC can play a role for
explaining understanding/communication.
Not so easy to express precisely, so often
computability is required instead.

e Or, integrating PoC in a dynamic framework
of language processing: second part of this

course.

e Additional requirements on syntax and/or
meanings. E.g. restrictions to certain types
of grammars, or syntactic algebras, or re-
quiring that meanings form a semantic al-
gebra, specified, say, via some logical lan-
guage. Or, Kracht’s ‘theory of signs’ (dis-
cussed in the second part of the course).
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Is PoC empty? Only methodological?'

Observe:

e There are (many) non-compositional seman-
tics. [Just find p,q, o, p such that p =, ¢
but a(p) #, a(q). E.g. let o be “John be-

”

lieves that ...” and g a truth-conditional

semantics. ]

So triviality claims usually look like: “Any se-
mantics can be ‘made’ compositional by suitable

syntactic and/or semantic manipulations.”
More formally:

(1) For any p : E — M there is another se-
mantics 4’ : B/ — M’ which is composi-

tional and related to p in some natural way.

The interest of (?7?) depends entirely on how p’
is related to p (and E’ to E, and M’ to M).

The motivation for (?7?) can take two forms:
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Extras, cont.

e Tarski’s Principle: If p can be substituted
for ¢ somewhere with preserved meaning-
fulness, then it can be so substituted ev-
erywhere (=qef p and ¢ have the same se-
mantic category). Or the Husserl Property
(Hodges): Synonymous expressions have the
same semantic category.

e Full abstraction relative to a class of expres-
sions K; a converse of Comp(=,): If p,q
have the same semantic category but p #, ¢,
then there are two non-synonymous complex
expressions in K, one of which results from
replacing p by ¢ in the other.

e Meanings as structured objects (Frege 1923,
Carnap’s notion ‘intensional isomorphism’,
Fodor 2000, Pagin forthcoming). Strength-
ens full abstraction: under the same condi-
tions as above, any two complex expressions
related in that way are non-synonymous.
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A Whenever a proposed semantics was not
compositional it has been possible to adjust
it in an interesting and informative way so

that PoC holds.
Example: Frege on indirect meaning.

Example: Various constructions in Mon-

tague Grammar.

Example: From static PL semantics to
DPL semantics in order to handle anaphora.
(Kamp, Groenendijk and Stokhof)

Example: Compositional semantics for
genitives and ‘have’ a la Partee and Janssen.

B Some mathematical theorem about compo-
sitionality proves (1). (Cf. Zadrozny 1994)

But note:

e A can be taken in the opposite way, as a sub-
stantial observation about PoC and natural
languages. None of these examples follow

from general mathematical considerations.
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Notes, cont.

e B needs restrictions on how the new compo-
sitional semantics relates to the old:

— Zadrozny’s construction (with non-wf
sets) replaces the given u by a one-one
semantics: no two expressions have the
same meaning. Then PoC trivially holds:

— Too much violence to given semantics,

and can anyway be done simpler: Let

' (p) = (p, u(p))-

w' is a 1-1, hence compositional, func-
tion from E to new ‘meanings’ E x M,
from which p is easily recovered: p(p) =
27d(y/(p)). Ling. interest (again) zero.

Conclusion: The force of PoC depends on theo-

retical as well as empirical facts about language.

As a general principle it is both methodological

(depends on the choice of grammars, meanings,

etc.) and empirical (given such a choice it risks

being refuted by observations), as any common
sense philosophy of science would tell us.
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The point of PoC (for natural languages) is to
help explain how understanding/communication
works (perhaps also production, systematicity,
learning). This is what should drive the study
of PoC.

But PoC alone cannot be the explanation. It
just states the existence of certain meaning op-
erations. Some account is needed of how we have
‘access’ to these operations (e.g. know them, or
follow them, or compute by means of them).
Similar remarks hold for strengthened versions
of PoC. Thus PoC (possibly extended) can only
be a necessary condition on such an explana-
tion. Which is quite enough to make it interest-

ing.
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The point of an abstract version of POFI

Advantages:
e Precision, clarity.

e Generality: no assumptions made about

grammar or meanings.

— Compatibility with many notions of syn-

tax.

— ‘Meanings’ can be (a) set-theoretic ob-
jects of a model-theoretic semantics; (b)
terms in some logical language into which
object language expressions are ‘trans-
lated’ by u; (c) equivalence classes of for-
mulas in such a language under some no-
tion of logical equivalence; (d) ...

Possible disadvantage:

e Too general to have bite. Then extra re-
quirements can be added to PoC as men-
tioned before (e.g. full abstraction).
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Choice of framework'

Starting from Montague 1970 (“Universal
Grammar”), Janssen 1986 used many-sorted
algebras to model syntax-semantics. An up to
date version is in Hendriks 2001.

Syntax is given by an algebra

A= <(As)s€.‘57 (F’Y)’YEF>’

where sorts in S correspond to syntactic cate-
gories, Ay contains the expressions (strings) of
sort s, and each F is a total operation among
expressions with arguments and values of fixed
sorts (given by A’s signature). A is generated:
each expression is either atomic or the value of
some operator applied to some arguments.

Since expressions may be generated in more than
one way, meaning is not assigned to expressions
but to analysis trees or derivations, adequately
modeled by terms in the term algebra T'(A)
corresponding to A (with the same sorts and
signature).
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Meanings themselves given by another algebra
B = ((Bi)ier, (Gs)sen)-

Given mappings ¢ : S - T and p : ' — A
s.t. if I, takes objects of sort s1,...,s, to ob-

jects of sort s, then G takes objects of sort

p(7)
o(s1),...,0(s,) to objects of sort o(s), a mean-
ing assignment h to terms in T(A) is a (o, p)-

homomorphism if
(i) p has sort s implies that h(p) has sort o(s),

(ii) h(Fy(p1,---,pn)) =
Gp(’y)(h(pl)aah( ))

The framework also accounts for the fact that
meanings are often provided via an intermediate
logical language L; then B can be the syntac-
tic algebra of L (L is unambiguous so we don’t
need the term algebra of B), and a homomorphic
mapping [ from B to a ‘model-theoretic’ algebra
M (same sorts and signature as B) gives the se-
mantics of L.
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Comparison between the two approaches:

e Hodges uses no sorts but captures the ef-
fect of categories by means of partiality: a
syntactic rule (operator) is undefined for ar-
guments of the ‘wrong’ kind.

e But a notion of category can nevertheless be
reconstructed via substitutibility.

e Structure among meanings is disregarded in
Hodges’ approch. So meanings just form a
set, not an algebra whose sorts and signa-
ture need to be related to the syntax.

e Use of a term algebra to handle structural
ambiguity is the same, but Hodges allows
partial meaning assignments to these terms.

e As a result of this substantial simplification,
some syntactico-semantic features are not
modeled, but others become more visible (cf.
features like the Husserl Property and full
abstraction), and mathematical facts about
compositionality become more readily avail-
able.
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In principle,

TA) %~ B L M
A complication is that B in practice need not
have primitive operators corresponding to those
in A instead they are definable in B, so one uses

(in Hendriks’ version) the ‘polynomial closure’
I1(B) rather than B.

Summing up: This framework allows modeling
of a lot of syntactic and semantic detail (Hen-
driks also shows how to handle meaning postu-
lates).

But, if one is mainly interested in compositional-
ity, some of these details may be irrelevant, and
even in the way ... (e.g. Comp(=,) says nothing
about meanings).

Therefore we shall use a much simplified alge-
braic framework to talk about compositionality,
due to Hodges 2001.
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Some Mathematics of Compositionality'

The Framework (mostly as in Hodges 2001) I

GRAMMARS
E= <E7 A7 Q>a627

F a set of expressions, A C F a set of atoms,
each a € ¥ denotes a syntactic rule a: a par-
tial function from E™ to E (some n > 0).

As before, think of expressions as surface strings.
Thus, E is a partial algebra. For Var a set

of variables disjoint from E, T(E) is the set of
terms in a (total) term algebra over E U Var:

e Elements of Var U A are terms.
e Ift1,...,t, are terms and « is n-ary, then

‘a(ty, ..., ty) is a term.

Terms with variables are used here only as a
means to describe substitution; cf. below.
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The set GT(E) of grammatical terms records
which ‘derivations’ (which applications of rules
to which expressions) are permitted in E; it cor-
responds to a partial subalgebra of the term al-
gebra (with only variable-free terms), whose par-
tiality ‘mirrors’ the partiality in E:

e Elements of A are grammatical terms,
and val(a) = a for a € A.

e If p1,...,py are grammatical terms, with

val(p;) = e; for 1 < i < n, a is n-ary, and

e =uafei,...,ep) is defined, then (the term)
a(pla e Jp'ﬂ)

is also a grammatical term, and we set
val(a(pi,...,pn)) = €.
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SEMANTICS
A semantics for E is a partial function p
from GT(FE) to some set M. p € GT(E) is
(p-)meaningful if p € dom(u). wp is total if
dom(p) = GT(E).
A synonymy for E is a partial equivalence re-
lation on GT'(E). p induces the synonymy =,:

e p=, qiff p,q € dom(p) and p(p) = p(q)
Any synonymy = for E induces the equivalence
class semantics p= for E:

pn=()={e¢:p=q}

(if p € dom(=); otherwise undefined). Two se-
mantics for E are equivalent if they have the
same associated synonymy. (See Hodges Lemma
1 about these notions.)

Reasons for partiality of u could be

e that our semantics for a certain language is
still incomplete;

e that we want to make a distinction between
grammaticality and meaningfulness.
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Think of p € GT(E) as a derivation (analysis
tree) of the surface string val(p). The same
string may have different derivations (structural

ambiguity).

In a total algebra the evaluation function wval
from terms in the term algebra to F can be
defined separately. Here we need it to deter-
mine which terms of the form ‘a(py,...,p,) are
grammatical, so it is defined simultaneously with
GT(E).

There are no restrictions on the rules a, but the
function val is required to be surjective (so that
E is in this sense a (partial) generated algebra).

Any syntax where expressions are derived by
means of rules from atomic expressions can in

principle be modeled as a grammar in this sense.
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EXTENSIONS

Let u, v be semantics for E.
(a) v extends p iff u C v.
(b) v>piff=, C =,.

Thus, v is equivalent to p iff 4 > v and
v>piff =, ==,.

(c) =, extends =, iff for all p, g € dom(p),
P=pq<=p=vgq.
Hodges Lemma 2: =, extends =, iff v is
equivalent to some extension of .

Given p, finding a total compositional seman-
tics ¥ > p is trivial: The universal synonymy
R = GT(FE) x GT(FE) provides such a seman-
tics (where all grammatical terms have the same
meaning). The trick is to find a total synonymy
which is compositional and extends =,. Then
we also get a total compositional v which ex-

tends p.
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SUBSTITUTION
For s,p € T(E) and z € Var,

s(plr)

is the result of replacing all occurrences of = in
s by p. Similarly for

(2) $(p1y- -y PRl - T0),

where x4, ..., x, are distinct.

(Instead of) SEMANTIC CATEGORIES
p,q € GT(E) have the same (u-)category,

P ~udq,

iff Vs € T(E)[s(p|z) € dom(p) < s(glz) €
dom ()]

Tarski Property (too strong for NL): If for
some s, s(p|x), s(q|z) € dom(p), then p ~,, q.

Husserl Property: p =, q implies p ~, q.
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Some Extension Results'

Fix a compositional semantics u for E with
X =dom(p) C GT(E).

When does p have a total compositional exten-
sion (for the same grammar)? If X C Y C
GT(E), when does p have a compositional ex-
tension to Y? Not always:

EXAMPLE (not in Hodges): Suppose
a=,b, alb)=,c
Bla(a)), Blc) € X
a(a), Bla(b)) € GT(E) - X
Blala)) £, B(c)
1 can be compositional, but there is no composi-
tional extension of y to the new terms, a fortiori
no total one.

OBS: Husserl Property fails, and dom(u) is not
closed under subterms.
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COMPOSITIONALITY

Rule(u):
For each a € ¥ there is an operation r, such
that whenever «(py, ..., py) is y-meaningful,

w((p1,---pn)) = ra(p(p), - - -\ p(pn))-

We take this condition (not the next one) to pre-
suppose that dom(u) is closed under subterms.

Comp(=,):
If pp =, ¢ for 1 < i < n, and
$(P1y-- oy PnlT1y o), S(q1y -y qn|T1, .- Tn)

are both py-meaningful, then

s(p1y .y PnlTry e 20) =008(q1, - GnlTe, e Z0).
1-Comp(=,): As Comp(=,) but with n = 1.

Husserl Property: Comp(=,) < 1-Comp(=,,).

FACT (Hodges): If dom(u) is closed under sub-
terms, Rule(x) and Comp(=,,) are equivalent.
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Define: dom(u) = X is cofinal in Y (where X C
Y C GT(E)) if every term in Y is a subterm of

some term in X.

Examples where the present sort of extension
question (where E is fixed) can be relevant:

e Game-theoretic semantics for predicate logic
which gives meaning to sentences but not to
formulas with free variables. (Here dom(u)
is cofinal in Y = GT(E) = the set of all
formulas.)

e A language whose semantics is only partially
known or described. (May or may not be
cofinal.)
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Hodges’ Extension Theorem.

When X = dom(p) is cofinal in Y, the following
strengthening of compositionality due to Hodges
expresses the (Fregean?) idea that the meaning
of a term in Y should be the “contribution the
term makes to the meanings of terms in X con-

taining it”.

If dom(v) =Y, v is a Fregean cover of y if
F(a): p =, ¢ and t(p|z) € X implies ¢(q|z) € X.
F(b): p =, ¢q and ¢(p|z),t(g|z) € X implies that

tple) =p t(ql2).
F(c): If p £, q there is a term ¢ such that either

exactly one of t(p|z),t(¢|z) is in X, or both
are and t(p|z) #, t(g|z). (‘full abstraction’)

v is a Fregean extension of y if it in addition

is an extension of u.

FACT (Hodges): (Roughly,) Fregean exten-
sions are unique (up to equivalence).
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THEOREM (Hodges): Suppose that X =
dom(p) is cofinal in Y C GT(E), Y is closed
under subterms, and that u is (1-)compositional
and Husserlian. Then v in the Existence Lemma
is a Fregean extension of p. So in particular p
has a Fregean extension to Y, which is unique
(up to equivalence), compositional, and Husser-

lian.

Proof. It only remains to show that for p,q €
X,p=, qimpliesp=, q. If p=, gthenp ~, ¢
by the Husserl Property. If s(p|x) € X then
s(plz) =, s(q|lz) by 1-compositionality. Thus,
by definition, p =, q. 0
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COMP LEMMA (Hodges): Suppose
w,v, X, Y as above and Y closed under
subterms.

(a) Condition F(a) implies that v is Husserlian.

(b) Conditions F(a)—(c) (i.e. that v is a Fregean
cover of p) imply that v is compositional.

EXISTENCE LEMMA (Hodges): Suppose
u, X, Y as above with Y closed under subterms.
Then p has a Fregean cover v with domain Y,
such that if p,q € X and p =, ¢, then p =, q.

Proof. Define: p =, ¢ iff

p ~u q, and for all s, if s(p|lz) € X then
s(plr) =y s(qlx).
O

OBS We have no guarantee yet that v extends
. In fact we made no assumptions at all about
u except cofinality (actually only needed for (a)
above). This is where compositionality and the
Husserl Property come in.
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COROLLARY (Hodges): If X = dom(u) is
cofinal in GT(E) and p is Husserlian, t.f.a.e:

(a) p is compositional.
(b) p has a (unique) total Fregean extension.

(¢) p has a (unique) <-minimal total composi-

tional extension.

Proof. (a) = (b) by the Theorem. (¢) = (a)
is trivial. (b) = (c) by “general nonsense about
Horn properties”: Take

=, = ﬂ {=D=,: = total comp. synonymy}

By mere (strict Horn) form of this condition, =,
is total and comp. We need =, to extend =,:
for p,qg € X, p#, ¢ = p #, q. This is Horn,
so the mere ezxistence of such an extension v,
given by (b), implies that =, extends =,. Or,
directly, for p,q € X: If p =, q, then p =, q by
definition, so p =, ¢ since v extends p. 0

But=, ¢ =,!
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Digression about ‘general nonsense’:

See Hodges 2001 for the definition of strict
Horn and Horn properties.

FACT: Horn properties are closed under inter-

section.

It follows that if 7 is strict Horn,

ﬂ {=>=,,= isn}

is 7 (and D=,). For this conclusion we need
to know that the set {=D=,: = is 7} is non-
empty, but this holds since GT(E) x GT(E) is
7 in the strict Horn case.

Here 7 can be: being a total compositional syn-
onymy. Then for the Corollary we need

ﬂ {=D=,: = is 7 and extends =,},

which is Horn. Now the non-emptiness of the
relevant set follows by (b). O
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Example 1 cont.

Let

l(p) ifpe X

v(p) = '
(1,1(p)) otherwise

Verify that this is a (the) Fregean extension.
But v is not the <-smallest total compositional
and Husserlian extension of y. That extension
is given by e.g.

l(p) ifpe X

p(p) = (b,l(p)) if p begins with b

(e, l(p)) if p begins with ¢

=, contains as few pairs as possible. E.g. bab =,

cab but bab #, cab. The latter distinction is not
‘forced’ by u, so p is not fully abstract.

Thus we have three distinct total compositional
extensions of u, with

-

N
IIf
N
N
Il
q

m
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Three Examples I

EXAMPLE 1: Let

e GT(FE) be the set of finite strings of a,b,c
s.t. every second letter is an a (under oper-
ation of adding 1 allowed letter to the left);

e X = dom(u) = the set of strings beginning
with a, and p(p) = l(p) = length(p).

If I(p) = l(¢g) and both strings begin with
a, they can be substituted with preserved u-
meaningfulness and length, so u is Husserlian
and compositional. Also, X is cofinal in GT'(E).

Some total extensions of pu:
o(p) = l(p) for all p € GT(E).

E.g. ab =, ba. Replacement does not neces-
sarily preserve grammaticality, but if it does, it
also preserves length. So o is 1-compositional
but not Husserlian.
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EXAMPLE 2: PREDICATE LOGIC

e GT(E) is the set of all formulas, with atomic
formulas as atoms.

e i is a standard semantics for sentences, such
that o =, ¢ iff E ¢ < .
It then holds that:

o ¢ ~, ¢ iff ¢ and ¥ have the same free vari-
ables. Hence, p is (trivially) Husserlian.

e Sentences are cofinal in formulas.

e Substitution of logical equivalent sub-
sentences preserves logical equivalence, i.e.,

1 is compositional.
And one may now verify that

e The (more or less) standard total seman-
tics, where ¢ =,, ¥ iff ¢ and 1 are logically
equivalent and have the same free variables,
satisfies F(a)—(c), and hence is the Fregean
extension of .
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EXAMPLE 3: IF LOGIC

e GT(E) is the set of all IF formulas, with
atomic formulas as atoms.

e 1 is a classical semantics for atomic formu-
las, and a Hintikka style game-theoretic se-
mantics for IF sentences [cf. Hodges].

It then holds that:

o As before, ¢ ~, 1 iff ¢ and ¥ have the same
free variables, so u is Husserlian.

e Sentences are cofinal in formulas.

e Two sentences are p-synonymous iff they are
true in exactly the same models.

Moreover,
PROPOSITION (Hodges): 1-Comp(y) holds.

COROLLARY: p has a total Fregean (fully
abstract, Husserlian, and compositional) exten-

sion.
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In fact it is consistent that no total extension of
1 is Husserlian.

Nevertheless, pu; is still compositional: Suppose
Di = ¢, 1 <0<,

and that s(p1,...,pn|-..) and s(q1,...,qn|-.")
are both grammatical. If both are in GT'(E)-Y,
they are pi-synonymous by definition. So sup-
pose $(p1,-..,pn|.-.) €Y. Thenpy,...,p, €Y
since Y is closed under subterms. But then
also q1,...,q, € Y, since if ¢; € GT(E) — Y,
Di Zuy ¢i by definition of pq. Thus

piEufqia 1<i<n.

By (n applications of) the Husser]l Property for
p! it follows that s(qi,...,qn|...) € Y. There-
fore

s(p1y-- s pul--) =pr s(qre ol )

by uf-compositionality, and hence

s(P1,. e spnl o) = sl@r, oo anl - ).
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Variation 1: Drop Coﬁnality.

Then Fregean extensions make less sense, but we
can still ask for total compositional extensions.

COROLLARY: If y is Husserlian and compo-
sitional, it has a total compositional (but not

necessarily Husserlian) extension.
Proof. Define
Y = {p: pis a subterm of some term in X}.

X is cofinal in Y and Y is closed under sub-
terms, so by Hodges’ Theorem there is a Fregan
extension pf of p to Y, which is compositional
and Husserlian by the Comp Lemma.

Let p1 be a one-point extension of uf to GT(E),
coinciding with p/ on Y and making all terms in
GT(FE)—Y synonymous, but not with anything
inY.

p1 is in fact a Fregean extension of u. But since
we don’t assume cofinality, we cannot apply the
Comp Lemma to p1.
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Variation 2: Drop the Husserl Property too.

We know from an Example that some condi-
tion in addition to compositionality is needed.
It turns out that the ‘Domain Rule’ is a (neces-
sary and) sufficient one.

THEOREM: If p is a compositional semantics
whose domain is closed under subterms, it has a

total compositional extension.

With the Husserl Property, this is trivial — a
one-point extension works. But without it, it
seems harder.

The proof below requires a closer look at the
structure of terms: we must pay attention to

distinct occurrences of subterms in a given term.

Here are some tools used in the proof:
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FIRST OCCURRENCE LEMMA:
If p1,...,pn are distinct occurrences of terms in
s, and if

s=50(p1s---sPn|--.) =to(P1y---sPnl--.),
then, for any terms qi,. .., ¢n,

$0(q1s s qnl--) =tolqrs -y qn]-..).

Proof. Immmediate. But note that the result
is false if we consider terms and not occurrences
of terms. For example,

ala,c,a) = az, ¢, a)(alz) = ala, ¢, x)(alx),

but

a(b, ¢, a) = a(z, c,a)(blx) # ala, ¢, z)(b|lx) = ala, ¢, b).

O

The next lemma is a generalization of this.
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GENERALIZED COMP LEMMA: Sup-
pose u is a compositional semantics for E such
that X = dom(u) is closed under subterms, and
suppose

So(pla"'apkp:la"'axk) = tO(qla---aqn|yla---ayn)

is a grammatical term. If p; =, p} for 1 <
i < kand ¢ =, ¢ for 1 < j < n,
and if furthermore so(p}, ..., pjlz1,...,2) and
to(qy, -+ q,|y1, - -, yn) are both in X, then

So(Phs -l v a) = to(qls - @yt - Yn)-

NB k = n, so = to, pi = ¢ = pj gives
Comp(=,).

Proof. Straightforward, using the Second Oc-
currence Lemma, but it is easier to look at an
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SECOND OCCURRENCE LEMMA:
Suppose
s=580D1y-- skl --) =to(qy -y qnl ),

where the p; and ¢; are distinct occurrences
of terms in s. There exists a sub-sequence
T1yeeeyTm Of P1,.. ., Dkyq1, ..., qn such that

(i) s=t(riy...,"ml|z1,...,2m) for some .

(ii) For 1 < ¢ # j < m, (the occurrence) r; is

not a subterm of (the occurrence) r;.

Now let pi,...,p) be arbitrary terms, and let 7/
be the result of replacing each occurrence p; in
r; by p;. Then

(a) so(py,---\pkl---) =
(e T2, ey Zm)-

Similarly, if ¢f,...,q, are terms, and s is the
result of replacing each subterm ¢; in r; by q;-,

(b) to(qyy- - dqhl-..) =
t(Sh, .oy Shl21s ey Zm)-
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EXAMPLE: Let s =

7(p15 04((117 q2)7/8(p35p4ap5)5 q4 ) = A/(Tla ERE) T4)
—_——— ——— ——
p2 q3 Ps

So, for the obvious sq and tg,

s=so(p1s---sp6|--.) =to(qr,---,qa|...).
Here r4, = q4 = pg, where rq,...,ry is
the relevant sub-sequence (no repetitions) of
Dis--+3D6541,---,qs (Which does have a repeti-
tion). As described in the Second Occurrence

Lemma,

so(Pls .-y pglTe, oy me) = y(rh, .. 1))

= (P, P5, B(P5, P D5), D)

tO(qllv .. -,qzlL'yla cee 7y4) = ’\/(517 c. 7321)

= v(p1, (41, 43), 43, 44)-
If these two terms are both in the domain of
a compositional semantics p, and this domain
is closed under subterms, and if p; =, p} and

qj =pu q;-, then the two terms are pu-synonymous,
as the Generalized Comp Lemma states. O
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The main construction: Let = be any syn-
onymy for E, and X = dom(=).

o If s € GT(F)and s’ € X, s corresponds to s’
if there is a term sg and distinct occurrences
P1,...,pk in s and pi,...,p), in s’ such that
p; =p; for 1 <i <k, and

s =so(p1s---y0ElT1, .00y 2R),

s =so(pls-- - DilT1, - TE)-

X1 is the set of terms corresponding to
terms in X. Thus, X C X+ C GT(E).

e For any grammatical terms s, ¢, let
s=Tt

iff there is a term s’ € X corresponding to s
and a term t’ € X corresponding to ¢ such
that s’ =¢'.
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LEMMA E: If = is compositional and X is
closed under subterms, =" is compositional.

Proof. Too long here. Assume (1 <i < k)
Di =t qis

and s(p1,---,pkl---),s(q1, -, q|--.) € XT. So

Di :pi(](pila---apiki|---)aQi = in(qila---aqili|---

PioPins - Pigy |-+ -) = @o(ias - @iyl -,
with pi; = pj;, 1 < j < ki, and ¢4 = qj;, 1 <
7 < ;. Furthermore,

$(p1y--y0k|--2) = so0(a1, .. am|...),

8(ql,...,q;€|...) :to(bl,...,bn|...>,

where

s =solay,...,al,)...) €X,

t' =to(by,...,0...) € X,
and a; = af, 1 <i<m, andbij;-, 1<j<n.
Enough to prove that s’ = ¢/, but this requires
careful attention to how the subterms (occur-

rences) p; can be distributed relative to the sub-
terms a;, and similarly for ¢; vs. b;. ([
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LEMMA A: =7 is symmetric, and reflexive on

its field X . Also, if s corresponds to s’, then
o
S="S.

LEMMA B: If = is compositional, then =+
extends =, ie., forall s,t € X, s=t < s="1.

Proof. Take s,t€ X. If s=t,s="¢ If s="
t, let s’,t’ correspond to s,t, respectively. Since
s,t € X, =-comp applies,so s=s' =t/ =t. [

LEMMA C: If X is subterm-closed, so is X T.

Proof. Use Second Occurrence Lemma. O

LEMMA D: If = is compositional and X is
closed under subterms, then =7 is transitive.

Proof. Transitivity follows from the fact that,
when = is comp and X closed under subterms,

(3) If s corresponds to both s € X and s” € X,
then ¢’ = s”.

But (??) in turn can be seen to follow by a direct
application of the Generalized Comp Lemma. [

Slide 42

Concluding the proof of the Theorem:

Given a compositional p with X = dom(u)
closed under subterms, repeat the previous con-
struction:

=0 = :“

=n4+1 = (En)+

= Uncw =n, and Y = dom(=).

Now one can see that = is a compositional ex-
tension of =, with Y closed under subterms,
which although not Husserlian has the following
weaker property:

(*) If p; =, q;, and both s(p1,...,p|...) and
s(q1y--yqk|-..) are in GT(E), then
s(p1s-- k|- ..) € dom(p) iff
s(q1y---sqx|-..) € dom(u).
And then, finally, a one-point extension of =
from Y to GT(E) is enough to give us a total
compositional extension of =, by an argument

similar to the one in the proof of the Corollary
to Hodges’ Theorem. O
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[Draft of paper with results in Variations 1 and
2 available on request.]

Variation 3: + Cofinality — Husserl.

OPEN PROBLEM: For a cofinal semantics,
what is the condition besides compositionality
which, in the absence of the Husserl Property,
guarantees that it has a total compositional ex-

tension (perhaps even with full abstraction)?

This problem is probably more interesting, and
harder, than any of the previous ones.
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PoC and Frege’s Context Principle.

The ‘Context Principle’ (CP):

“nach der Bedeutung der Worter muss im
Satzzusammenhang, nicht in ihrer Vereinzelung
gefragt werden” (G. Frege, Grundlagen der
Arithmetik, 1884)

“never to ask for the meaning of a word in iso-
lation, but only in the context of a proposition”

(Austin’s translataion)

“one should seek the meaning of words in the in-
terconnections of the sentence containing them,
and not in separating them out from one an-

other” (transl. suggested by Hodges)
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Other Applications I

The framework is useful not just for ‘mathemat-
ics of compositionality’, but also for some lin-
guistic applications. E.g.

e [t already handles structural ambiguity
but can be extended to other forms of am-
biguity as well: See below.

e Westerstahl 2000 uses it to discuss idioms,
in particular the common idea that ‘idioms
are non-compositional’. 3 different ways in
which an idiom may be added to a given
grammar and semantics are discussed:

— as a new atom;

— as an expression with syntactic but not
semantic structure;

— as an expression with both syntactic and
semantic structure;

in each case the preservation of comp. for

this sort of extension is accounted for in (a

slight extension of) Hodges’ framework.
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If Frege really had the ‘contribution idea’, that
the meaning of a word should be the contribu-
tion it makes to the meanings of sentences con-
taining it, then one interpretation of the CP is
related to full abstraction, or to the notion of
a Fregean extension. Then we could say, by
Hodges’ Comp Lemma:

e Compositionality follows from the Context
Principle.

But other, less precise, interpretations of CP are
possible.
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On interpretations of CP:

(D)

Some radical semantic holism: that one
should not speak of the meaning of words at
all; or, that they ‘lose’ their meaning when

taken out of their sentential context?

— Too absurd (as a Frege interpretation) to be
taken seriously. Even in the Grundlagen, be-
fore he had made the S/B distinction, Frege
ends up — after severely criticizing various
other attempts, saying e.g. that one must
look for the meanings of number-words not
in the mind but in the sentences where they
occur — giving a very precise meaning (and

denotation) to such words ‘in isolation’.

That sentences, not words, are ‘the funda-

mental unit of communication’?

— Sure, an important insight, but presumably
not all that Frege intended.

That the sentential context is relevant to

word meaning?

— OK, but too weak.
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Extreme context-dependence: sentence
meaning part of word meaning (e.g. meaning
of a in sis (s,...)); no two occurrences of a
word can have the same meaning.

Serious context-dependence: a word (a
sentence part) might mean the same in two
sentences, but no systematicity. Some of
Frege’s remarks in the second half of S &
B could be taken to indicate this.

Systematic context-dependence: as in
(B), but with systematicity. Frege’s remarks
in S & B about indirect Sinn and Bedeutung
could be taken to indicate this.

No context-dependence: a word means
(What several
people think Frege should have said.)

the same in all sentences.

(A), (B) in conflict with PoC and idea of creativ-
ity of language: a speaker cannot then ‘work out’

the meaning of new sentences.

(C) compatible with PoC, but not trivially; de-
tails to be worked out.
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Interpretations of CP, cont.

That the meaning of a word is determined
by its sentential context? Distinguish dif-
ferent readings of

— “determine”:

x mathematically (as a function);

* metaphysically (which ‘comes first’);

* epistemologically (again, which ‘comes
first’);

— “sentential context”:

x All sentences where it occurs (or a sig-
nificant part of them). This is the ‘con-
tribution’ idea.

+* The sentence where it occurs. Seems
to be what Frege actually says. But
how serious this is depends on which

stand you take on the following issue:
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Oe more remark on Frege, PoC, and CP:

Distinguish:

(a)

The argument from understanding new sen-
tences. Leads to inductively (or recursively)
defined semantics. (See ‘Digression’ in am-
biguity section below.)

The ‘contribution’ idea: Leads to PoC + full
abstraction.

The ‘structured meanings’ idea: Leads to
PoC + Inv Comp. (Ibid.)

(¢c) = (b) = (a) but not inversely.
Frege’s frequent talk of the self-evidence of
what should happen when substituting syn-

onyms makes sense for (b), not for (a), but
fits best with (c).

Fodor 2000, and in more detail Pagin 2001
argue that (c) is actually needed to explain

linguistic communication.
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PoC and Ambiguity: Relational Semantics'

Usually PoC and the occurrence of ambiguity
are seen as incompatible. If (complex) expres-
sions have more than one meaning, the usual
formulation of PoC does not even make sense.

In the Montague tradition all (non-lexical) ambi-
guity is structural: each meaning difference cor-
responds to a syntax difference. Methodological
principle or substantial claim? Arguments?

Exceptions are views which

(a) claim conflict between PoC and ambiguity
can be resolved by switching to set mean-
ing, where the set meaning of an expression
is (in the simplest case) the set of its old

meanings; or

(b) focus on processes of interpretation and dis-
ambiguation within dynamic semantics; or

(¢c) (perhaps) rely on underspecified meanings.

More about (b) in next part of the course.
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(ITa) Pelletier: Lexical ambiguity:
(4) Linda approached the bank.

“And this type of (sentential) ambiguity is not seen
as jeopardizing compositionality, for it is still felt
that the meaning of these kinds of sentences (where
the meaning is now interpreted as a set of unam-
biguous meanings) is a function (only) of the mean-
ing of its parts and their manner of syntactic com-
bination. The basic, atomic parts are allowed to
have more than one meaning, and this permission is
then passed up to more complex phrases containing
such ambiguous parts.” (Pelletier, ‘Semantic com-
positionality’, 1999)

e ‘Harmlessness claim’. (Say: PoC can be
adapted to lexical ambiguity; or such am-
biguity can be eliminated or ignored in con-
nection with PoC).

e Set semantics is a way to maintain PoC.

e ‘Passing-up claim’: Various meanings of lex.
amb. items passed up to complex expres-
sions.
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Here I want to briefly explore the issue whether
(non-structural) ambiguity necessarily is in con-
flict with PoC.

First, two illustrative quotes:

ey

“At this point we may also note a strange aspect of
the principle of compositionality that we did not yet
consider. It speaks of “the meaning of a compound
expression”. The use of the singular the meaning
is common in formulations of the compositionality
principle, but clearly has no basis in reality: ex-
pressions in natural language hardly ever have one
single meaning. Speaking of the meaning is reason-
able only when applied to utterances, where often
only one of the many possible meanings of the sen-
tence is contexually possible or relevant. This is why
people can use language without constantly dealing
with millions of possible meanings. (But as already
noted, the meanings of utterances by their very na-
ture do not obey Compositionality.)” (Bunt and

Muskens, Computational Semantics, 1999)
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(IIb) Pelletier on non-lexical ambiguity.
Pelletier argues that in contrast with clear cases
of structural ambiguity [such as

(5) He saw her duck under the table]

there are also clear cases of sentences with just
one structure which are still (non-lexically) am-
biguous. For example,

(6) Most critics reviewed two films.

(7) John wondered when Alice said she would
leave.

(8) When Alice rode a bicycle, she went to
school.

(9) The philosophers lifted the piano.

And for these,

“what compositionality cannot admit is that there
be no lexical ambiguity, there be but one syntactic

structure, and yet there be two (or more) meanings
for that item.” (Ibid., Pelletier’s italics.)
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Relational Semantics '

Grammars as before, but now let a semantics
be a relation R between grammatical terms and
meanings; a subset of GT(E) x M. The earlier
case is the special one where R = p is single-
valued. Let

R, ={me M : R(p,m)}.

R may correspond to several synonymies, e.g.
e p=Rq < R,=R,

e =p; = transitive closure of the relation that
holds between p and ¢ iff R, N Ry # 0.

Given R, the corresponding (single-valued) set
meaning semantics pug is given by

1r(p) = Rp.

FACT: =,,, = =g. Hence (under the ‘Domain
Rule’), Rule(ur) is equivalent to Comp(=g).

Question: What about a version of PoC for R?
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FORMAL VERSION OF THIS IDEA?

First attempt:

(*) For each « there is a finite number of oper-
1

Q-

ations r .,7% such that any meaning of
a(p1, ..., pn) results from applying some 77,

to some of the meanings of p1,..., pn.

CLAIM: Too weak. Under weak assumptions
one can show that practically all semantics (in a
precise sense) satisfy (*).

NB Assume here that all sets R, are finite.

Second attempt:

(**) For each « there is a finite number of opera-
1

Q-

tions r .,7E such that m is a meaning of
a(p1s...,pn) if and only if m results from
applying some 7 to some of the meanings

Ofpla ceeyDPn.

CLAIM: Too strong. (?) Passes up ‘too many’
meanings from parts to wholes. [NB (**) implies
Comp(=g), but not conversely.]
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(7?7) Most critics reviewed two films.

(??7") a(B(most,critic), y(review, S(two,film)))

An idea: One rule () but two semantic oper-
ations, i.e., two ways to get from the meanings
of the parts to the meanings of the whole.

To ‘figure out’ the meaning of the sentence one
has to have the meanings of the parts, and to
know or be able to follow these two operations,
and to choose between them. Fach meaning of
the sentence is ‘calculable’ from some meanings
of its parts. The two available ways are still
specified in advance and depend, as before, only
on the relevant syntactic rule.

Hence, an additional source of ambiguity. Com-
pare choosing an appropriate meaning for bank
in order to understand

(??) Linda approached the bank,

and choosing an appropriate meaning operation
for «v in order to understand (?7).
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Final attempt: Fix k (= ‘degree of non-lexical
ambiguity’).
Rule*(R)

For each « there are operations 7} k

PERERE L

such that for each m € Ry, ... p,) there is
some j and there are m; € Rp,, 1 < i < n,
such that

(a) m=1rd(my,...,my),
(b) for each 5/, 1 < j' <k,
rd,(ma,....my) € Ra(py,....pn)-
FACT:

(i) When k = 1 there just one semantic opera-
tion per rule as in standard PoC, but there
may still be lexical ambiguities.

(i) Rule*(R) implies Rule**1(R) for all k.

(iii) When R = p is single-valued, Rule®(p) is
equivalent to Rule(u), for each k > 1.

[(iii) holds because of (b).]
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A criterion

Rule”(R) fails if there are too many meanings of

a complex expression.

Let | X| be the cardinality of the set X.

Card*(R)

For any rule «, and any selection of n-tuples
of expressions p;, ,...,p;, (i € I) that a can
be applied to,

| U Ra(pn,---,pm)' S k| U(R;Uil X 'XRP¢H)|'

el icl

FACT: Rule®(R) implies Card*(R), but
(VAénénen p.c.) not conversely.
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Lexical Ambiguity I

Tentative Claim: Rule!(R) is an adequate ver-
sion of PoC for the case that there is ‘only’ lex-
ical ambiguity.

But note: Rule!(R) neither implies nor is im-
plied by compositionality of the set semantics
(i.e., Rule(ur) or Comp(=g)).

Any reason to expect set semantics to be compo-
sitional? Consider (cf. also van Deemter 1996)

R, = Ry = {mlamQ}
Ra(a,a) = {mam/}
{m}

(assume a(a,b),a(b,a) € GT(E)). a =g b, but
afa,a) Zr a(b,b), so Comp(=g) fails.

Rob,p)

But Rule!(R) can hold: there can be one oper-
ation 7, such that

m=rq(mi,m1), m =rs(ma,my).
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SUBSTITUTION VERSIONS?

FACT: Rule!(R) does not imply Comp(=), for
any synonymy = for FE between =r and =p;.

Proof. Cf. example on next slide. O

In fact, there seem to be no natural substitution
versions of Rule®(R).

Tentative conclusion: It is the rule version
of PoC that captures the idea of this principle
explaining understanding and communication:
how meanings are ‘passed up’. The substitu-
tion version relies on an adequate notion of syn-
onymy. In the non-ambiguous case there is an
obvious candidate, and Rule(y) and Comp(u)
are (extensionally) equivalent, but not in the
ambiguous case.

But things are a bit more complex. More about
this in a minute.
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Compositionality of set semantics cont.

It is natural that semantic operations also deter-

mine which meanings are passed up, cf.
(??) Linda approached the bank.

(10) Linda robbed the bank.

But in the earlier example it seems to be the ez-
pression (a or b) which determines this, if any-
thing.

To some, this contradicts a fundamental intu-

ition about compositionality, namely,

(+) The expressions themselves do not matter
for interpretation, only their meanings.

Where does (+) come from? At this point, it
will be appropriate to reflect a little more about
the various intuitions behind the idea of compo-
sitionality.
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DIGRESSION: COMP. INTUITIONS
Some tentative claims:

e The ‘modern’ argument from understand-
ing, that PoC explains how we are able to
‘work out’ the meaning of sentences we have
never heard before, only leads to the weaker
thesis of an inductively defined semantics,
say, Ind(x): Under the usual conditions,

p(a(pr, - spn)) = Ta(Pry- - s Doy (1) - -, 1(P))-

Here the expressions do matter. What could
possibly be wrong with using that info too?

e Frege never argued for Rule(u) (or Ind(w)).
But he did argue for
— (1-)Comp(=,,) (in S & B; at least for Be-
deutung);

— the idea that the meaning of a complex
expression is a structured whole built
from the meanings of its parts (in ‘Com-
pound Thoughts’).
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Digression cont.

Now just as Rule(u) or Ind(p) can be general-
ized to a relational semantics R, so can Struc(pu),

which becomes

() Fach meaning of a(pi,...,pn) is a struc-

tured whole built from some meanings of

P1s---Pn-

But the difference (again) is that in the rela-
tional case there is no reason to expect this idea
to be expressible in terms of substitutions, be-
cause there is no obvious adequate notion of syn-
onymy. (Of course, for each choice of meanings,
the old ideas of substitution of synonyms apply.)
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Digression cont.

e Call the latter idea Struc(u). We might try
to capture it formally as 1-Comp(=,) and

Inv-Comp(=,)
If p #,, q then for all s, s(p|z) #, s(q|z).

e Only something like Struc(u) explains why
Frege could take 1-Comp(=,,) as self-evident
in S & B. Mere ‘passing-up’ arguments do
not support 1-Comp(=,,). But 1-Comp(=,,)
lies behind intuitions like (+) that the ex-
pressions used should not matter.

Now back to the ambiguous case. We could
weaken Rule®(R) to Ind*(R) in the obvious way,
and the earlier examples would cease to be prob-
lematic. No substitution version of composition-
ality would hold, but the same goes for Ind(u)
in the single-valued case (we could have u(a) =
u(b) but ra(a,p(@) = pla(a)) # pla(b)) =
ra(b; p(a))).
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Some conclusions:

e The idea behind relational semantics is
that ‘passing-up’ (or formation of structured
meanings) is done relative to a choice (of
meanings for lexical items, of which seman-
tic operation to apply, etc.). Once this is
seen, the temptation to use set semantics
disappears. In particular, there seems to be
no reason to expect set semantics to be com-

positional.
e This choice is thus relegated to context.

e Also from the point of view of computational
simplicity, set semantics looks unnatural.

We have now discussed Pelletier’s ‘passing-up
claim’, and his (and others’) claim that set se-

mantics takes care of compositionality.

Finally, a few words about his ‘harmlessness
claim’ for lexical ambiguity.
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A SENSE IN WHICH LEXICAL AMBI-
GUITY IS HARMLESS

The obvious idea is that such ambiguity can al-
ways be eliminated, without disturbing compo-
sitionality. (NB This presupposes a notion of
comp. compatible with ambiguity.) Thus:

Replace ambiguous atoms a with n meanings by
indexed non-ambiguous atoms aq,...,d,. As-
suming these have the same surface form, we di-
rectly get a new set of grammatical terms, each
of which is a lexical disambiguation of an old
term. If R is a semantics for the old terms, de-
fine R? for indexed terms in the obvious way for
atoms, and inductively for complex terms by:

R¥(a(p1, ... ,pn),m) iff
R(a(py,---,p, ), m) and
m =7l (my,...,my,)

for some j and some m; € Rgi. (Assuming
Rule®(R). Here p~ is the result of deleting
all indices on atoms in p.)

Slide 69

References

[1] H. Bunt and R. Muskens, 1999, Computational
semantics. In Bunt and Muskens (eds), Com-

puting Meaning, Vol. 1, Kluwer, Dordrecht, 1-
32.

[2] J. Fodor, 2000, In Critical Condition, MIT
Press, Cambridge.

[3] H. Hendriks, 2001, Compositionality and
model-theoretic interpretation. In [?], 29-48.

[4] W. Hodges, Formal features of compositional-

ity, 2001. In [7], 7-28.

[5] T. Janssen, 1986, Foundations and Applications
of Montague Grammar, Part 1, CWI Tracts 19
and 28, Amsterdam.

[6] T.Janssen, 2001, Frege, contextuality and com-
positionality. In [?], 115-136.

[7] R. Montague, 1970, Universal Grammar. Theo-
ria 36. Also in R. Thomason (ed.), Formal Phi-
losophy, Yale UP, New Haven, 373-398.

[8] P. Pagin, 2001, Frege, communication, and
strong compositionality. Forthcoming.

Slide 71

FACT: Suppose R is a relational semantics for
E which satisfies Rule®(R). Then R? is a se-
mantics for the corresponding indexed grammar
E? such that

(a) If R%(p,m) then R(p—,m).

(b) If R(p—,m) then R%(q,m), for some lexical
disambiguation ¢ of p~—.

(¢) R? has no lexical ambiguities, and
Rule®(R4) holds. In particular, if k& = 1,
R? is a single-valued and compositional
semantics.

Slide 70

[9] P. Pagin and D. Westerstahl (eds), 2001, Spe-
cial issue on Compositionality of the Journal of
Logic, Language, and Information, vol. 10:1.

[10] J. Pelletier, 1999, Semantic compositionality:
Free algebras and the argument from ambigu-
ity. In M. Faller et al. (eds), Proceedings of the
Seventh CSLI Workshop on Logic, Language
and Computation, CSLI Publications, Stan-
ford.

[11] J. Pelletier, 2001, Did Frege believe Frege’s
Principle? In [?], 87-114.

[12] G. Sandu and J. Hintikka, 2001, Aspects of
compositionality. In [?], 49-61.

[13] D. Westerstahl, 1998, On mathematical proofs
of the vacuity of compositionality. Linguistics
and Philosophy 21, 635-643.

[14] D. Westerstahl, 2000, On the compositionality
of idioms; an abstract approach. In D. Barker-
Plummer et al. (eds), Proceedings of LLCS,
CSLI Publications, Stanford, to appear.

[15] W. Zadrozny, 1994, From compositional to sys-
tematic semantics, Linguistics and Philosophy
17, 320-342.

Slide 72



