Sample Solution Outline

Question Q1

(a) froSearch([[Node|T]|_], Path):- goal(Node), reverse([Node|T],Path). froSearch([[Node|T]|More], Path):-
findall([Next,Node|T], arc (Node,Next), Children), add2frontier (Children, More,New), froSearch (New, Path).
(b) (i) $\operatorname{cost}([H], 0)$.
$\operatorname{cost}([A, B \mid T], C):-\operatorname{arcCost}(A, B, C 0), \operatorname{cost}([B \mid T], C 1), C$ is C0+C1.
(ii) True.
(iii) $\operatorname{cost}(\operatorname{arc})=-1$ and $h=0$ OR $\operatorname{cost}(\operatorname{arc})=0$ and $h($ node $)=$ $1 /(1+\operatorname{depth}($ node $))$
(iv) False if arc costs vary. True, if arcs all have same positive cost (and finite branching).
(v) False: sufficient with 2 more conditions but not necessary
(c) (i) Only (A) $-\operatorname{arc} 2([b, c],[c], K B)$ and $\operatorname{arc} 3([b, c],[c], K B)$ but not $\operatorname{arc}([b, c],[c], K B)$ for KB described in question
(ii) False: loop on $\mathrm{KB}=[[\mathrm{a}, \mathrm{b}],[\mathrm{b}, \mathrm{a}]]$
(iii) True: can only prove heads, and no need to prove them twice
(d) The explosion in the search space is offset by a search tree with depth $=\mathrm{n}$, number of variables, and branching factor $=\max \left(s_{i}\right)$, allowing variable instantiation to be interleaved with constraint satisfaction and backtracking to avoid multiple fruitless searches.

Question Q2

(a) What to do at a state - i.e. to define a policy $\pi: S \rightarrow A$ in order to maximize reward
(b) Yes, if $p\left(s, a, s^{\prime}\right)>0$. Since $\sum_{s^{\prime}} p\left(s, a, s^{\prime}\right)=1$, there must be some s^{\prime} for which $p\left(s, a, s^{\prime}\right)>0$. Reward specified by r may vary if it is construed as expected value (over a variety of transitions).
(c) choose a to maximize expected immediate reward

$$
\arg \max _{a} \sum_{s^{\prime}} p\left(s, a, s^{\prime}\right) r\left(s, a, s^{\prime}\right)
$$

(d) (i) $q_{0}(s, a)=\sum_{s^{\prime}} p\left(s, a, s^{\prime}\right) r\left(s, a, s^{\prime}\right)$ which is 0 for $s^{\prime} \neq(3,3),(2,2)$
(ii) Recall that for $s_{n}=\sum_{i=0}^{n} b^{i}$,

$$
s_{n+1}=1+b s_{n}=s_{n}+b^{n+1} \Longrightarrow s_{n}=\frac{1-b^{n+1}}{1-b}
$$

so

$$
\begin{aligned}
k \sum_{i=0}^{n} b^{i} & =k \frac{1-b^{n+1}}{1-b} \\
& =10 k\left(1-.9^{n+1}\right) \text { for } b=.9
\end{aligned}
$$

turning ± 1 into ± 10 with $\gamma=.9$

$$
\begin{aligned}
q_{0}((2,2), a) & =-1 \text { immediate reward } \\
q_{n+1}((2,2), a) & =-1+.9 Q_{n}((2,2), a) \quad[=-1.9 \text { for } n=0] \\
& =-10\left(1-.9^{n+2}\right) \quad[=-10(.19)=-1.9 \text { for } n=0] \quad k=-1 \\
& \rightarrow-10 \text { as } n \rightarrow \infty \\
q_{0}((3,3), a) & =1 \quad \text { immediate reward } \\
q_{n+1}((3,3), a) & =1+.9 Q_{n}((3,3), a) \quad[=1.9 \text { for } n=0] \\
& =10\left(1-.9^{n+2}\right) \quad[=10(.19)=1.9 \text { for } n=0] \quad k=1 \\
& \rightarrow 10 \text { as } n \rightarrow \infty
\end{aligned}
$$

For limit $n \rightarrow \infty$, use eqns

$$
q=-1+.9 q \text { and } q^{\prime}=1+.9 q^{\prime}
$$

for

$$
q=-10 \text { and } q^{\prime}=10
$$

(iii) $q_{n}((2,3)$,left $)$ and $Q_{n}((2,3)$,down $)$ for every integer $n \geq 0$

$$
\begin{aligned}
q_{n}((2,3), \text { left }) & =q_{n}((2,2), a)
\end{aligned} \rightarrow-10 \quad(-1 \text { for } n=0), ~ 子 \quad(1 \text { for } n=0)
$$

(e) What they have in common are outputs in the unit interval $[0,1]$. They differ in their inputs: subset S of sample space Ω for μ; proposition α for P, and value x of a variable X for the probabily distribution P_{X}. Note that

$$
P_{X}(x)=P(X=x)=\mu(\{\omega \in \Omega \mid \omega \models X=x\})
$$

