Back to computation as search

```
search(Node) :- goal(Node).
search(Node) :- arc(Node,Next), search(Next).
```


Back to computation as search

```
search(Node) :- goal(Node).
search(Node) :- arc(Node,Next), search(Next).
```

More than one Next may satisfy arc (Node, Next)
\rightsquigarrow non-determinism

Back to computation as search

```
search(Node) :- goal(Node).
search(Node) :- arc(Node,Next), search(Next).
```

More than one Next may satisfy arc (Node, Next)
\rightsquigarrow non-determinism
Choose Next closest to goal (heuristic h, Q) perhaps keeping track of costs (min cost, A^{*})

Back to computation as search

```
search(Node) :- goal(Node).
search(Node) :- arc(Node,Next), search(Next).
More than one Next may satisfy arc (Node, Next)
\(\rightsquigarrow\) non-determinism
Choose Next closest to goal (heuristic \(h, Q\) ) perhaps keeping track of costs (min cost, \(\mathrm{A}^{*}\) )
```

Available choices depend on arc

- actions specified by Turing machine (graph)

Back to computation as search

```
search(Node) :- goal(Node).
search(Node) :- arc(Node,Next), search(Next).
```

More than one Next may satisfy arc (Node, Next)
\rightsquigarrow non-determinism
Choose Next closest to goal (heuristic h, Q) perhaps keeping track of costs (min cost, A^{*})

Available choices depend on arc

- actions specified by Turing machine (graph)

Computation eliminates non-determinism (determinization)

Back to computation as search

```
search(Node) :- goal(Node).
search(Node) :- arc(Node,Next), search(Next).
```

More than one Next may satisfy arc (Node, Next)
\rightsquigarrow non-determinism
Choose Next closest to goal (heuristic h, Q) perhaps keeping track of costs (min cost, A^{*})

Available choices depend on arc

- actions specified by Turing machine (graph)

Computation eliminates non-determinism (determinization)
Bound number of calls to arc (iterations of search)

Terminating search

Search times out after too many ticks

```
bSearch(Node,_) :- goal(Node).
bSearch(Node,Bound) :- arc(Node,Next),
tick(Bound,Less),
bSearch(Next,Less).
```


Terminating search

Search times out after too many ticks

$$
\begin{aligned}
& \text { bSearch(Node,_) :- goal (Node). } \\
& \text { bSearch(Node, Bound) :- } \text { arc(Node,Next), } \\
& \text { tick(Bound,Less), } \\
& \text { bSearch(Next,Less). }
\end{aligned}
$$

Design tick to be terminating there is no infinite sequence x_{1}, x_{2}, \ldots s.t.

$$
\operatorname{tick}\left(x_{i}, x_{i+1}\right) \text { for every integer } i>0
$$

Terminating search

Search times out after too many ticks

$$
\begin{aligned}
& \text { bSearch(Node,_) :- goal(Node). } \\
& \text { bSearch(Node, Bound) :- } \text { arc(Node,Next), } \\
& \text { tick(Bound,Less), } \\
& \text { bSearch(Next,Less). }
\end{aligned}
$$

Design tick to be terminating there is no infinite sequence x_{1}, x_{2}, \ldots s.t.

$$
\operatorname{tick}\left(x_{i}, x_{i+1}\right) \text { for every integer } i>0
$$

and set Bound based on Start

$$
\begin{aligned}
\text { search(Start) :- } & \text { bound(Start,Bound), } \\
& \text { bSearch(Start,Bound). }
\end{aligned}
$$

Feasibility and non-determinism: P vs NP

Cobham's Thesis
A problem is feasibly solvable iff some deterministic Turing machine ($d T m$) solves it in polynomial time.
$P=\{$ problems a dTm solves in polynomial time $\}$

Feasibility and non-determinism: P vs NP

Cobham's Thesis

A problem is feasibly solvable iff some deterministic Turing machine (dTm) solves it in polynomial time.
$P=\{$ problems a dTm solves in polynomial time $\}$
$N P=$ \{problems a non-deterministic Tm solves in polynomial time $\}$

Feasibility and non-determinism: P vs NP

Cobham's Thesis

A problem is feasibly solvable iff some deterministic Turing machine ($d T m$) solves it in polynomial time.
$P=\{$ problems a dTm solves in polynomial time $\}$
$N P=$ \{problems a non-deterministic Tm solves in polynomial time $\}$

Clearly, $P \subseteq N P$.

Feasibility and non-determinism: P vs NP

Cobham's Thesis

A problem is feasibly solvable iff some deterministic Turing machine ($d T m$) solves it in polynomial time.
$P=\{$ problems a dTm solves in polynomial time $\}$
$N P=$ \{problems a non-deterministic Tm solves in polynomial time $\}$

Clearly, $P \subseteq N P$.
Whether $P=N P$ is the most celebrated open mathematical problem in computer science.

Feasibility and non-determinism: P vs NP

Cobham's Thesis

A problem is feasibly solvable iff some deterministic Turing machine ($d T m$) solves it in polynomial time.
$P=\{$ problems a dTm solves in polynomial time $\}$
$N P=$ \{problems a non-deterministic Tm solves in polynomial time $\}$

Clearly, $P \subseteq N P$.
Whether $P=N P$ is the most celebrated open mathematical problem in computer science.
$P \neq N P$ would mean non-determinism wrecks feasibility.

Feasibility and non-determinism: P vs NP

Cobham's Thesis

A problem is feasibly solvable iff some deterministic Turing machine ($d T m$) solves it in polynomial time.
$P=\{$ problems a dTm solves in polynomial time $\}$
$N P=$ \{problems a non-deterministic Tm solves in polynomial time $\}$

Clearly, $P \subseteq N P$.
Whether $P=N P$ is the most celebrated open mathematical problem in computer science.
$P \neq N P$ would mean non-determinism wrecks feasibility.
$P=N P$ says non-determinism makes no difference to feasibility.

A closer look

Given a set L of strings, and a $\mathrm{Tm} M$.

A closer look

Given a set L of strings, and a $\mathrm{Tm} M$.
M solves L in time n^{k} if there is a fixed integer $c>0$ such that for every string s of size n,

$$
s \in L \quad \Longleftrightarrow M \text { accepts } s \text { within } c \cdot n^{k} \text { steps. }
$$

A closer look

Given a set L of strings, and a $\mathrm{Tm} M$.
M solves L in time n^{k} if there is a fixed integer $c>0$ such that for every string s of size n,

$$
s \in L \quad \Longleftrightarrow M \text { accepts } s \text { within } c \cdot n^{k} \text { steps. }
$$

$\operatorname{TIME}\left(n^{k}\right):=\left\{L \mid\right.$ some dTm solves L in time $\left.n^{k}\right\}$ e.g. $\operatorname{TIME}(n)$ includes every regular language

A closer look

Given a set L of strings, and a $\mathrm{Tm} M$.
M solves L in time n^{k} if there is a fixed integer $c>0$ such that for every string s of size n,

$$
s \in L \quad \Longleftrightarrow M \text { accepts } s \text { within } c \cdot n^{k} \text { steps. }
$$

$\operatorname{TIME}\left(n^{k}\right):=\left\{L \mid\right.$ some dTm solves L in time $\left.n^{k}\right\}$ e.g. $\operatorname{TIME}(n)$ includes every regular language

$$
P:=\bigcup_{k \geq 1} \operatorname{TIME}\left(n^{k}\right)
$$

A closer look

Given a set L of strings, and a $\mathrm{Tm} M$.
M solves L in time n^{k} if there is a fixed integer $c>0$ such that for every string s of size n,

$$
s \in L \quad \Longleftrightarrow M \text { accepts } s \text { within } c \cdot n^{k} \text { steps. }
$$

$\operatorname{TIME}\left(n^{k}\right):=\left\{L \mid\right.$ some dTm solves L in time $\left.n^{k}\right\}$
e.g. $\operatorname{TIME}(n)$ includes every regular language

$$
P:=\bigcup_{k \geq 1} \operatorname{TIME}\left(n^{k}\right)
$$

$\operatorname{NTIME}\left(n^{k}\right):=\left\{L \mid\right.$ some $n T m$ solves L in time $\left.n^{k}\right\}$

$$
N P:=\bigcup_{k \geq 1} \operatorname{NTIME}\left(n^{k}\right)
$$

Boolean satisfiability (SAT)

SAT. Given a Boolean expression φ with variables x_{1}, \ldots, x_{n}, can we make φ true by assigning true/false to x_{1}, \ldots, x_{n} ?

$$
\text { e.g., }\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{3}}\right)
$$

Boolean satisfiability (SAT)

SAT. Given a Boolean expression φ with variables x_{1}, \ldots, x_{n}, can we make φ true by assigning true/false to x_{1}, \ldots, x_{n} ?

Checking that a particular assignment makes φ true is easy (P).

$$
\text { e.g., }\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{3}}\right)
$$

Boolean satisfiability (SAT)

SAT. Given a Boolean expression φ with variables x_{1}, \ldots, x_{n}, can we make φ true by assigning true/false to x_{1}, \ldots, x_{n} ?

Checking that a particular assignment makes φ true is easy (P). Non-determinism (guessing the assignment) puts SAT in NP.

$$
\text { e.g., }\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{3}}\right)
$$

Boolean satisfiability (SAT)

SAT. Given a Boolean expression φ with variables x_{1}, \ldots, x_{n}, can we make φ true by assigning true/false to x_{1}, \ldots, x_{n} ?

Checking that a particular assignment makes φ true is easy (P). Non-determinism (guessing the assignment) puts SAT in NP. But is SAT in P ? There are 2^{n} assignments to try.

$$
\text { e.g., }\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{3}}\right)
$$

Boolean satisfiability (SAT)

SAT. Given a Boolean expression φ with variables x_{1}, \ldots, x_{n}, can we make φ true by assigning true/false to x_{1}, \ldots, x_{n} ?

Checking that a particular assignment makes φ true is easy (P). Non-determinism (guessing the assignment) puts SAT in NP. But is SAT in P ? There are 2^{n} assignments to try.

Cook-Levin Theorem. SAT is in P iff $P=N P$.

$$
\text { e.g., }\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{3}}\right)
$$

Boolean satisfiability (SAT)

SAT. Given a Boolean expression φ with variables x_{1}, \ldots, x_{n}, can we make φ true by assigning true/false to x_{1}, \ldots, x_{n} ?

Checking that a particular assignment makes φ true is easy (P). Non-determinism (guessing the assignment) puts SAT in NP. But is SAT in P ? There are 2^{n} assignments to try.

Cook-Levin Theorem. SAT is in P iff $P=N P$.

$$
\text { e.g., }\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{3}}\right)
$$

CSAT: φ is a conjunction of clauses, where a clause is an OR of literals, and a literal is a variable x_{i} or negated variable $\overline{x_{i}}$

Boolean satisfiability (SAT)

SAT. Given a Boolean expression φ with variables x_{1}, \ldots, x_{n}, can we make φ true by assigning true/false to x_{1}, \ldots, x_{n} ?

Checking that a particular assignment makes φ true is easy (P). Non-determinism (guessing the assignment) puts SAT in NP. But is SAT in P ? There are 2^{n} assignments to try.

Cook-Levin Theorem. SAT is in P iff $P=N P$.

$$
\text { e.g., }\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{3}}\right)
$$

CSAT: φ is a conjunction of clauses, where a clause is an OR of literals, and a literal is a variable x_{i} or negated variable $\overline{x_{i}}$
$k-S A T$: every clause has exactly k literals 3-SAT is as hard as SAT, 2-SAT is in P

Boolean satisfiability (SAT)

SAT. Given a Boolean expression φ with variables x_{1}, \ldots, x_{n}, can we make φ true by assigning true/false to x_{1}, \ldots, x_{n} ?

Checking that a particular assignment makes φ true is easy (P). Non-determinism (guessing the assignment) puts SAT in NP. But is SAT in P ? There are 2^{n} assignments to try.

Cook-Levin Theorem. SAT is in P iff $P=N P$.

$$
\text { e.g., }\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{3}}\right)
$$

CSAT: φ is a conjunction of clauses, where a clause is an OR of literals, and a literal is a variable x_{i} or negated variable $\overline{x_{i}}$
$k-S A T$: every clause has exactly k literals 3 -SAT is as hard as SAT, 2-SAT is in P

Horn-SAT: every clause has at most one positive literal - linear

Prolog and SAT

Prolog KB (definite clauses)

$$
\mathrm{x} 1 \text { :- x2, x4. }
$$

$x 2$:- x3. $\quad \rightsquigarrow \quad[\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 4],[\mathrm{x} 2, \mathrm{x} 3],[\mathrm{x} 4]]$ x 4 .

Prolog and SAT

Prolog KB (definite clauses)
x1 :- x2,x4.

$$
x 2:-x 3 . \quad \rightsquigarrow \quad[[x 1, x 2, x 4],[x 2, x 3],[x 4]]
$$

$$
x 4
$$

CSAT-input

$$
\begin{aligned}
& x 1 \vee \overline{x 2} \vee \overline{x 4} \\
& x 2 \vee \overline{x 3}
\end{aligned} \quad \rightsquigarrow \quad[[1,-2,-4],[2,-3],[4]]
$$

$$
x 4
$$

Prolog and SAT

Prolog KB (definite clauses)

$$
\mathrm{x} 1 \text { :- x2, x4. }
$$

$$
x 2:-x 3 . \quad \rightsquigarrow \quad[[x 1, x 2, x 4],[x 2, x 3],[x 4]]
$$

$$
\mathrm{x} 4
$$

CSAT-input

$$
\begin{aligned}
& x 1 \vee \overline{x 2} \vee \overline{x 4} \\
& x 2 \vee \overline{x 3}
\end{aligned} \quad \rightsquigarrow \quad[[1,-2,-4],[2,-3],[4]]
$$

$$
\mathrm{x} 4 .
$$

The assignment making all variables TRUE satisfies all CSAT-inputs in which every clause has a positive literal. (All definite clause KBs are satisfiable.)

Prolog and SAT

Prolog KB (definite clauses)
x1 :- x2,x4.

$$
x 2:-x 3 . \quad \rightsquigarrow \quad[[x 1, x 2, x 4],[x 2, x 3],[x 4]]
$$

$$
x 4
$$

CSAT-input

$$
\begin{aligned}
& x 1 \vee \overline{x 2} \vee \overline{x 4} \\
& x 2 \vee \overline{x 3}
\end{aligned} \quad \rightsquigarrow \quad[[1,-2,-4],[2,-3],[4]]
$$

$$
x 4 \text {. }
$$

The assignment making all variables TRUE satisfies all CSAT-inputs in which every clause has a positive literal. (All definite clause KBs are satisfiable.)

From proofs to unsatisfiability:

