- search(Node) :- goal(Node).
- search(Node) :- arc(Node,Next), search(Next).

```
search(Node) :- goal(Node).
```

```
search(Node) :- arc(Node,Next), search(Next).
```

More than one Next may satisfy arc(Node,Next) ~> non-determinism

search(Node) :- goal(Node).

```
search(Node) :- arc(Node,Next), search(Next).
```

More than one Next may satisfy arc(Node,Next) ~> non-determinism

> Choose Next closest to goal (heuristic h, Q) perhaps keeping track of costs (min cost, A*)

search(Node) :- goal(Node).

search(Node) :- arc(Node,Next), search(Next).

More than one Next may satisfy arc(Node,Next) ~> non-determinism

> Choose Next closest to goal (heuristic h, Q) perhaps keeping track of costs (min cost, A*)

Available choices depend on arc

- actions specified by Turing machine (graph)

search(Node) :- goal(Node).

search(Node) :- arc(Node,Next), search(Next).

More than one Next may satisfy arc(Node,Next) ~> non-determinism

> Choose Next closest to goal (heuristic h, Q) perhaps keeping track of costs (min cost, A*)

Available choices depend on arc

- actions specified by Turing machine (graph)

Computation eliminates non-determinism (determinization)

search(Node) :- goal(Node).

search(Node) :- arc(Node,Next), search(Next).

More than one Next may satisfy arc(Node,Next) ~> non-determinism

> Choose Next closest to goal (heuristic h, Q) perhaps keeping track of costs (min cost, A*)

Available choices depend on arc

- actions specified by Turing machine (graph)

Computation eliminates non-determinism (determinization) Bound number of calls to arc (iterations of search)

Terminating search

Search times out after too many ticks

Terminating search

Search times out after too many ticks

Design tick to be *terminating* there is **no** infinite sequence x_1, x_2, \ldots s.t.

 $tick(x_i, x_{i+1})$ for every integer i > 0

Terminating search

Search times out after too many ticks

Design tick to be *terminating* there is **no** infinite sequence x_1, x_2, \ldots s.t.

 $tick(x_i, x_{i+1})$ for every integer i > 0

and set Bound based on Start

Cobham's Thesis

A problem is feasibly solvable iff some deterministic Turing machine (dTm) solves it in polynomial time.

 $P = \{ \text{problems a dTm solves in polynomial time} \}$

Cobham's Thesis

A problem is feasibly solvable iff some deterministic Turing machine (dTm) solves it in polynomial time.

 $P = \{ \text{problems a dTm solves in polynomial time} \}$

 $NP = \{ \text{problems a non-deterministic Tm solves in polynomial time} \}$

Cobham's Thesis

A problem is feasibly solvable iff some deterministic Turing machine (dTm) solves it in polynomial time.

 $P = \{ \text{problems a dTm solves in polynomial time} \}$

 $NP = \{ \text{problems a non-deterministic Tm solves in polynomial time} \}$

Clearly, $P \subseteq NP$.

Cobham's Thesis

A problem is feasibly solvable iff some deterministic Turing machine (dTm) solves it in polynomial time.

 $P = \{ \text{problems a dTm solves in polynomial time} \}$

 $NP = \{ \text{problems a non-deterministic Tm solves in polynomial time} \}$

Clearly, $P \subseteq NP$.

Whether P = NP is the most celebrated open mathematical problem in computer science.

Cobham's Thesis

A problem is feasibly solvable iff some deterministic Turing machine (dTm) solves it in polynomial time.

 $P = \{ \text{problems a dTm solves in polynomial time} \}$

 $NP = \{ \text{problems a non-deterministic Tm solves in polynomial time} \}$

Clearly, $P \subseteq NP$.

Whether P = NP is the most celebrated open mathematical problem in computer science.

 $P \neq NP$ would mean non-determinism wrecks feasibility.

Cobham's Thesis

A problem is feasibly solvable iff some deterministic Turing machine (dTm) solves it in polynomial time.

 $P = \{ \text{problems a dTm solves in polynomial time} \}$

 $NP = \{ \text{problems a non-deterministic Tm solves in polynomial time} \}$

Clearly, $P \subseteq NP$.

Whether P = NP is the most celebrated open mathematical problem in computer science.

 $P \neq NP$ would mean non-determinism wrecks feasibility. P = NP says non-determinism makes no difference to feasibility.

Given a set L of strings, and a Tm M.

Given a set L of strings, and a Tm M.

M solves *L* in time n^k if there is a fixed integer c > 0 such that for every string *s* of size *n*,

 $s \in L \iff M$ accepts s within $c \cdot n^k$ steps.

Given a set L of strings, and a Tm M.

M solves *L* in time n^k if there is a fixed integer c > 0 such that for every string *s* of size *n*,

 $s \in L \iff M$ accepts s within $c \cdot n^k$ steps.

 $TIME(n^k) := \{L \mid \text{some dTm solves } L \text{ in time } n^k\}$ e.g. TIME(n) includes every regular language

Given a set L of strings, and a Tm M.

M solves *L* in time n^k if there is a fixed integer c > 0 such that for every string *s* of size *n*,

 $s \in L \iff M$ accepts s within $c \cdot n^k$ steps.

 $\mathsf{TIME}(n^k) := \{L \mid \text{some dTm solves } L \text{ in time } n^k\}$

e.g. TIME(n) includes every regular language

$$P := \bigcup_{k \ge 1} \mathsf{TIME}(n^k)$$

Given a set L of strings, and a Tm M.

M solves *L* in time n^k if there is a fixed integer c > 0 such that for every string *s* of size *n*,

 $s \in L \iff M$ accepts s within $c \cdot n^k$ steps.

 $\mathsf{TIME}(n^k) := \{L \mid \text{some dTm solves } L \text{ in time } n^k\}$

e.g. TIME(n) includes every regular language

$$P := \bigcup_{k \ge 1} \mathsf{TIME}(n^k)$$

 $NTIME(n^{k}) := \{L \mid \text{some nTm solves } L \text{ in time } n^{k} \}$ $NP := \bigcup_{k \ge 1} NTIME(n^{k})$

SAT. Given a Boolean expression φ with variables x_1, \ldots, x_n , can we make φ true by assigning true/false to x_1, \ldots, x_n ?

SAT. Given a Boolean expression φ with variables x_1, \ldots, x_n , can we make φ true by assigning true/false to x_1, \ldots, x_n ?

Checking that a particular assignment makes φ true is easy (P).

SAT. Given a Boolean expression φ with variables x_1, \ldots, x_n , can we make φ true by assigning true/false to x_1, \ldots, x_n ?

Checking that a particular assignment makes φ true is easy (*P*). Non-determinism (guessing the assignment) puts SAT in *NP*.

SAT. Given a Boolean expression φ with variables x_1, \ldots, x_n , can we make φ true by assigning true/false to x_1, \ldots, x_n ?

Checking that a particular assignment makes φ true is easy (*P*). Non-determinism (guessing the assignment) puts SAT in *NP*. But is SAT in *P*? There are 2^n assignments to try.

e.g.,
$$(x_1 \vee \overline{x_2} \vee x_3) \wedge (\overline{x_1} \vee \overline{x_3})$$

SAT. Given a Boolean expression φ with variables x_1, \ldots, x_n , can we make φ true by assigning true/false to x_1, \ldots, x_n ?

Checking that a particular assignment makes φ true is easy (*P*). Non-determinism (guessing the assignment) puts SAT in *NP*. But is SAT in *P*? There are 2^n assignments to try.

Cook-Levin Theorem. SAT is in P iff P = NP.

SAT. Given a Boolean expression φ with variables x_1, \ldots, x_n , can we make φ true by assigning true/false to x_1, \ldots, x_n ?

Checking that a particular assignment makes φ true is easy (*P*). Non-determinism (guessing the assignment) puts SAT in *NP*. But is SAT in *P*? There are 2^n assignments to try.

Cook-Levin Theorem. SAT is in P iff P = NP.

e.g.,
$$(x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor \overline{x_3})$$

CSAT: φ is a conjunction of clauses, where a *clause* is an OR of literals, and a *literal* is a variable x_i or negated variable $\overline{x_i}$

SAT. Given a Boolean expression φ with variables x_1, \ldots, x_n , can we make φ true by assigning true/false to x_1, \ldots, x_n ?

Checking that a particular assignment makes φ true is easy (*P*). Non-determinism (guessing the assignment) puts SAT in *NP*. But is SAT in *P*? There are 2^n assignments to try.

Cook-Levin Theorem. SAT is in P iff P = NP.

e.g.,
$$(x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor \overline{x_3})$$

CSAT: φ is a conjunction of clauses, where a *clause* is an OR of literals, and a *literal* is a variable x_i or negated variable $\overline{x_i}$

k-SAT: every clause has exactly k literals 3-SAT is as hard as SAT, 2-SAT is in P

SAT. Given a Boolean expression φ with variables x_1, \ldots, x_n , can we make φ true by assigning true/false to x_1, \ldots, x_n ?

Checking that a particular assignment makes φ true is easy (*P*). Non-determinism (guessing the assignment) puts SAT in *NP*. But is SAT in *P*? There are 2^n assignments to try.

Cook-Levin Theorem. SAT is in P iff P = NP.

e.g.,
$$(x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor \overline{x_3})$$

CSAT: φ is a conjunction of clauses, where a *clause* is an OR of literals, and a *literal* is a variable x_i or negated variable $\overline{x_i}$

k-SAT: every clause has exactly k literals 3-SAT is as hard as SAT, 2-SAT is in P

Horn-SAT: every clause has at most one positive literal - linear

Prolog KB (definite clauses) x1 :- x2,x4. x2 :- x3. → [[x1,x2,x4],[x2,x3],[x4]] x4.

Prolog KB (definite clauses) x1 :- x2,x4. x2 :- x3. → [[x1,x2,x4],[x2,x3],[x4]] x4.

CSAT-input

Prolog KB (definite clauses) x1 :- x2,x4. x2 :- x3. → [[x1,x2,x4],[x2,x3],[x4]] x4.

CSAT-input

The assignment making all variables TRUE satisfies all CSAT-inputs in which every clause has a positive literal. (All definite clause KBs are satisfiable.)

Prolog KB (definite clauses) x1 :- x2,x4. x2 :- x3. → [[x1,x2,x4],[x2,x3],[x4]] x4.

CSAT-input

The assignment making all variables TRUE satisfies all CSAT-inputs in which every clause has a positive literal. (All definite clause KBs are satisfiable.)

From proofs to unsatisfiability:

$$\underbrace{\underbrace{KB \text{ proves } \varphi}_{\text{Prolog}} \iff \underbrace{KB, \overline{\varphi}}_{\text{Horn (linear SAT)}} \text{ is not satisfiable}$$