
Back to computation as search

search(Node) :- goal(Node).

search(Node) :- arc(Node,Next), search(Next).

More than one Next may satisfy arc(Node,Next)

 non-determinism

Choose Next closest to goal (heuristic h, Q)
perhaps keeping track of costs (min cost, A∗)

Available choices depend on arc

- actions specified by Turing machine (graph)

Computation eliminates non-determinism (determinization)

Bound number of calls to arc (iterations of search)

1 / 32



Back to computation as search

search(Node) :- goal(Node).

search(Node) :- arc(Node,Next), search(Next).

More than one Next may satisfy arc(Node,Next)

 non-determinism

Choose Next closest to goal (heuristic h, Q)
perhaps keeping track of costs (min cost, A∗)

Available choices depend on arc

- actions specified by Turing machine (graph)

Computation eliminates non-determinism (determinization)

Bound number of calls to arc (iterations of search)

2 / 32



Back to computation as search

search(Node) :- goal(Node).

search(Node) :- arc(Node,Next), search(Next).

More than one Next may satisfy arc(Node,Next)

 non-determinism

Choose Next closest to goal (heuristic h, Q)
perhaps keeping track of costs (min cost, A∗)

Available choices depend on arc

- actions specified by Turing machine (graph)

Computation eliminates non-determinism (determinization)

Bound number of calls to arc (iterations of search)

3 / 32



Back to computation as search

search(Node) :- goal(Node).

search(Node) :- arc(Node,Next), search(Next).

More than one Next may satisfy arc(Node,Next)

 non-determinism

Choose Next closest to goal (heuristic h, Q)
perhaps keeping track of costs (min cost, A∗)

Available choices depend on arc

- actions specified by Turing machine (graph)

Computation eliminates non-determinism (determinization)

Bound number of calls to arc (iterations of search)

4 / 32



Back to computation as search

search(Node) :- goal(Node).

search(Node) :- arc(Node,Next), search(Next).

More than one Next may satisfy arc(Node,Next)

 non-determinism

Choose Next closest to goal (heuristic h, Q)
perhaps keeping track of costs (min cost, A∗)

Available choices depend on arc

- actions specified by Turing machine (graph)

Computation eliminates non-determinism (determinization)

Bound number of calls to arc (iterations of search)

5 / 32



Back to computation as search

search(Node) :- goal(Node).

search(Node) :- arc(Node,Next), search(Next).

More than one Next may satisfy arc(Node,Next)

 non-determinism

Choose Next closest to goal (heuristic h, Q)
perhaps keeping track of costs (min cost, A∗)

Available choices depend on arc

- actions specified by Turing machine (graph)

Computation eliminates non-determinism (determinization)

Bound number of calls to arc (iterations of search)

6 / 32



Terminating search

Search times out after too many ticks

bSearch(Node, ) :- goal(Node).

bSearch(Node,Bound) :- arc(Node,Next),

tick(Bound,Less),

bSearch(Next,Less).

Design tick to be terminating
there is no infinite sequence x1, x2, . . . s.t.

tick(xi , xi+1) for every integer i > 0

and set Bound based on Start

search(Start) :- bound(Start,Bound),

bSearch(Start,Bound).

7 / 32



Terminating search

Search times out after too many ticks

bSearch(Node, ) :- goal(Node).

bSearch(Node,Bound) :- arc(Node,Next),

tick(Bound,Less),

bSearch(Next,Less).

Design tick to be terminating
there is no infinite sequence x1, x2, . . . s.t.

tick(xi , xi+1) for every integer i > 0

and set Bound based on Start

search(Start) :- bound(Start,Bound),

bSearch(Start,Bound).

8 / 32



Terminating search

Search times out after too many ticks

bSearch(Node, ) :- goal(Node).

bSearch(Node,Bound) :- arc(Node,Next),

tick(Bound,Less),

bSearch(Next,Less).

Design tick to be terminating
there is no infinite sequence x1, x2, . . . s.t.

tick(xi , xi+1) for every integer i > 0

and set Bound based on Start

search(Start) :- bound(Start,Bound),

bSearch(Start,Bound).

9 / 32



Feasibility and non-determinism: P vs NP
Cobham’s Thesis
A problem is feasibly solvable iff some deterministic Turing
machine (dTm) solves it in polynomial time.

P = {problems a dTm solves in polynomial time}

NP = {problems a non-deterministic Tm solves in polynomial time}

Clearly, P ⊆ NP.

Whether P = NP is the most celebrated open mathematical
problem in computer science.

P 6= NP would mean non-determinism wrecks feasibility.

P = NP says non-determinism makes no difference to feasibility.

10 / 32



Feasibility and non-determinism: P vs NP
Cobham’s Thesis
A problem is feasibly solvable iff some deterministic Turing
machine (dTm) solves it in polynomial time.

P = {problems a dTm solves in polynomial time}

NP = {problems a non-deterministic Tm solves in polynomial time}

Clearly, P ⊆ NP.

Whether P = NP is the most celebrated open mathematical
problem in computer science.

P 6= NP would mean non-determinism wrecks feasibility.

P = NP says non-determinism makes no difference to feasibility.

11 / 32



Feasibility and non-determinism: P vs NP
Cobham’s Thesis
A problem is feasibly solvable iff some deterministic Turing
machine (dTm) solves it in polynomial time.

P = {problems a dTm solves in polynomial time}

NP = {problems a non-deterministic Tm solves in polynomial time}

Clearly, P ⊆ NP.

Whether P = NP is the most celebrated open mathematical
problem in computer science.

P 6= NP would mean non-determinism wrecks feasibility.

P = NP says non-determinism makes no difference to feasibility.

12 / 32



Feasibility and non-determinism: P vs NP
Cobham’s Thesis
A problem is feasibly solvable iff some deterministic Turing
machine (dTm) solves it in polynomial time.

P = {problems a dTm solves in polynomial time}

NP = {problems a non-deterministic Tm solves in polynomial time}

Clearly, P ⊆ NP.

Whether P = NP is the most celebrated open mathematical
problem in computer science.

P 6= NP would mean non-determinism wrecks feasibility.

P = NP says non-determinism makes no difference to feasibility.

13 / 32



Feasibility and non-determinism: P vs NP
Cobham’s Thesis
A problem is feasibly solvable iff some deterministic Turing
machine (dTm) solves it in polynomial time.

P = {problems a dTm solves in polynomial time}

NP = {problems a non-deterministic Tm solves in polynomial time}

Clearly, P ⊆ NP.

Whether P = NP is the most celebrated open mathematical
problem in computer science.

P 6= NP would mean non-determinism wrecks feasibility.

P = NP says non-determinism makes no difference to feasibility.

14 / 32



Feasibility and non-determinism: P vs NP
Cobham’s Thesis
A problem is feasibly solvable iff some deterministic Turing
machine (dTm) solves it in polynomial time.

P = {problems a dTm solves in polynomial time}

NP = {problems a non-deterministic Tm solves in polynomial time}

Clearly, P ⊆ NP.

Whether P = NP is the most celebrated open mathematical
problem in computer science.

P 6= NP would mean non-determinism wrecks feasibility.

P = NP says non-determinism makes no difference to feasibility.
15 / 32



A closer look
Given a set L of strings, and a Tm M.

M solves L in time nk if there is a fixed integer c > 0 such that for
every string s of size n,

s ∈ L ⇐⇒ M accepts s within c · nk steps.

TIME(nk) := {L | some dTm solves L in time nk}

e.g. TIME(n) includes every regular language

P :=
⋃
k≥1

TIME(nk)

NTIME(nk) := {L | some nTm solves L in time nk}

NP :=
⋃
k≥1

NTIME(nk)

16 / 32



A closer look
Given a set L of strings, and a Tm M.

M solves L in time nk if there is a fixed integer c > 0 such that for
every string s of size n,

s ∈ L ⇐⇒ M accepts s within c · nk steps.

TIME(nk) := {L | some dTm solves L in time nk}

e.g. TIME(n) includes every regular language

P :=
⋃
k≥1

TIME(nk)

NTIME(nk) := {L | some nTm solves L in time nk}

NP :=
⋃
k≥1

NTIME(nk)

17 / 32



A closer look
Given a set L of strings, and a Tm M.

M solves L in time nk if there is a fixed integer c > 0 such that for
every string s of size n,

s ∈ L ⇐⇒ M accepts s within c · nk steps.

TIME(nk) := {L | some dTm solves L in time nk}

e.g. TIME(n) includes every regular language

P :=
⋃
k≥1

TIME(nk)

NTIME(nk) := {L | some nTm solves L in time nk}

NP :=
⋃
k≥1

NTIME(nk)

18 / 32



A closer look
Given a set L of strings, and a Tm M.

M solves L in time nk if there is a fixed integer c > 0 such that for
every string s of size n,

s ∈ L ⇐⇒ M accepts s within c · nk steps.

TIME(nk) := {L | some dTm solves L in time nk}

e.g. TIME(n) includes every regular language

P :=
⋃
k≥1

TIME(nk)

NTIME(nk) := {L | some nTm solves L in time nk}

NP :=
⋃
k≥1

NTIME(nk)

19 / 32



A closer look
Given a set L of strings, and a Tm M.

M solves L in time nk if there is a fixed integer c > 0 such that for
every string s of size n,

s ∈ L ⇐⇒ M accepts s within c · nk steps.

TIME(nk) := {L | some dTm solves L in time nk}

e.g. TIME(n) includes every regular language

P :=
⋃
k≥1

TIME(nk)

NTIME(nk) := {L | some nTm solves L in time nk}

NP :=
⋃
k≥1

NTIME(nk)

20 / 32



Boolean satisfiability (SAT)

SAT. Given a Boolean expression ϕ with variables x1, . . . , xn,
can we make ϕ true by assigning true/false to x1, . . . , xn?

Checking that a particular assignment makes ϕ true is easy (P).
Non-determinism (guessing the assignment) puts SAT in NP.
But is SAT in P? There are 2n assignments to try.

Cook-Levin Theorem. SAT is in P iff P = NP.

e.g., (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3)

CSAT: ϕ is a conjunction of clauses, where a clause is an OR of
literals, and a literal is a variable xi or negated variable xi

k-SAT: every clause has exactly k literals
3-SAT is as hard as SAT, 2-SAT is in P

Horn-SAT: every clause has at most one positive literal — linear

21 / 32



Boolean satisfiability (SAT)

SAT. Given a Boolean expression ϕ with variables x1, . . . , xn,
can we make ϕ true by assigning true/false to x1, . . . , xn?

Checking that a particular assignment makes ϕ true is easy (P).

Non-determinism (guessing the assignment) puts SAT in NP.
But is SAT in P? There are 2n assignments to try.

Cook-Levin Theorem. SAT is in P iff P = NP.

e.g., (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3)

CSAT: ϕ is a conjunction of clauses, where a clause is an OR of
literals, and a literal is a variable xi or negated variable xi

k-SAT: every clause has exactly k literals
3-SAT is as hard as SAT, 2-SAT is in P

Horn-SAT: every clause has at most one positive literal — linear

22 / 32



Boolean satisfiability (SAT)

SAT. Given a Boolean expression ϕ with variables x1, . . . , xn,
can we make ϕ true by assigning true/false to x1, . . . , xn?

Checking that a particular assignment makes ϕ true is easy (P).
Non-determinism (guessing the assignment) puts SAT in NP.

But is SAT in P? There are 2n assignments to try.

Cook-Levin Theorem. SAT is in P iff P = NP.

e.g., (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3)

CSAT: ϕ is a conjunction of clauses, where a clause is an OR of
literals, and a literal is a variable xi or negated variable xi

k-SAT: every clause has exactly k literals
3-SAT is as hard as SAT, 2-SAT is in P

Horn-SAT: every clause has at most one positive literal — linear

23 / 32



Boolean satisfiability (SAT)

SAT. Given a Boolean expression ϕ with variables x1, . . . , xn,
can we make ϕ true by assigning true/false to x1, . . . , xn?

Checking that a particular assignment makes ϕ true is easy (P).
Non-determinism (guessing the assignment) puts SAT in NP.
But is SAT in P? There are 2n assignments to try.

Cook-Levin Theorem. SAT is in P iff P = NP.

e.g., (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3)

CSAT: ϕ is a conjunction of clauses, where a clause is an OR of
literals, and a literal is a variable xi or negated variable xi

k-SAT: every clause has exactly k literals
3-SAT is as hard as SAT, 2-SAT is in P

Horn-SAT: every clause has at most one positive literal — linear

24 / 32



Boolean satisfiability (SAT)

SAT. Given a Boolean expression ϕ with variables x1, . . . , xn,
can we make ϕ true by assigning true/false to x1, . . . , xn?

Checking that a particular assignment makes ϕ true is easy (P).
Non-determinism (guessing the assignment) puts SAT in NP.
But is SAT in P? There are 2n assignments to try.

Cook-Levin Theorem. SAT is in P iff P = NP.

e.g., (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3)

CSAT: ϕ is a conjunction of clauses, where a clause is an OR of
literals, and a literal is a variable xi or negated variable xi

k-SAT: every clause has exactly k literals
3-SAT is as hard as SAT, 2-SAT is in P

Horn-SAT: every clause has at most one positive literal — linear

25 / 32



Boolean satisfiability (SAT)

SAT. Given a Boolean expression ϕ with variables x1, . . . , xn,
can we make ϕ true by assigning true/false to x1, . . . , xn?

Checking that a particular assignment makes ϕ true is easy (P).
Non-determinism (guessing the assignment) puts SAT in NP.
But is SAT in P? There are 2n assignments to try.

Cook-Levin Theorem. SAT is in P iff P = NP.

e.g., (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3)

CSAT: ϕ is a conjunction of clauses, where a clause is an OR of
literals, and a literal is a variable xi or negated variable xi

k-SAT: every clause has exactly k literals
3-SAT is as hard as SAT, 2-SAT is in P

Horn-SAT: every clause has at most one positive literal — linear

26 / 32



Boolean satisfiability (SAT)

SAT. Given a Boolean expression ϕ with variables x1, . . . , xn,
can we make ϕ true by assigning true/false to x1, . . . , xn?

Checking that a particular assignment makes ϕ true is easy (P).
Non-determinism (guessing the assignment) puts SAT in NP.
But is SAT in P? There are 2n assignments to try.

Cook-Levin Theorem. SAT is in P iff P = NP.

e.g., (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3)

CSAT: ϕ is a conjunction of clauses, where a clause is an OR of
literals, and a literal is a variable xi or negated variable xi

k-SAT: every clause has exactly k literals
3-SAT is as hard as SAT, 2-SAT is in P

Horn-SAT: every clause has at most one positive literal — linear

27 / 32



Boolean satisfiability (SAT)

SAT. Given a Boolean expression ϕ with variables x1, . . . , xn,
can we make ϕ true by assigning true/false to x1, . . . , xn?

Checking that a particular assignment makes ϕ true is easy (P).
Non-determinism (guessing the assignment) puts SAT in NP.
But is SAT in P? There are 2n assignments to try.

Cook-Levin Theorem. SAT is in P iff P = NP.

e.g., (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3)

CSAT: ϕ is a conjunction of clauses, where a clause is an OR of
literals, and a literal is a variable xi or negated variable xi

k-SAT: every clause has exactly k literals
3-SAT is as hard as SAT, 2-SAT is in P

Horn-SAT: every clause has at most one positive literal — linear

28 / 32



Prolog and SAT
Prolog KB (definite clauses)

x1 :- x2,x4.

x2 :- x3.

x4.

 [[x1,x2,x4],[x2,x3],[x4]]

CSAT-input

x1 ∨ x2 ∨ x4

x2 ∨ x3

x4.

 [[1,-2,-4],[2,-3],[4]]

The assignment making all variables TRUE satisfies all
CSAT-inputs in which every clause has a positive literal.
(All definite clause KBs are satisfiable.)

From proofs to unsatisfiability:

KB proves ϕ︸ ︷︷ ︸ ⇐⇒ KB, ϕ︸ ︷︷ ︸ is not satisfiable

Prolog Horn (linear SAT)

29 / 32

https://www.scss.tcd.ie/Tim.Fernando/AI/csat.pdf


Prolog and SAT
Prolog KB (definite clauses)

x1 :- x2,x4.

x2 :- x3.

x4.

 [[x1,x2,x4],[x2,x3],[x4]]

CSAT-input

x1 ∨ x2 ∨ x4

x2 ∨ x3

x4.

 [[1,-2,-4],[2,-3],[4]]

The assignment making all variables TRUE satisfies all
CSAT-inputs in which every clause has a positive literal.
(All definite clause KBs are satisfiable.)

From proofs to unsatisfiability:

KB proves ϕ︸ ︷︷ ︸ ⇐⇒ KB, ϕ︸ ︷︷ ︸ is not satisfiable

Prolog Horn (linear SAT)

30 / 32

https://www.scss.tcd.ie/Tim.Fernando/AI/csat.pdf


Prolog and SAT
Prolog KB (definite clauses)

x1 :- x2,x4.

x2 :- x3.

x4.

 [[x1,x2,x4],[x2,x3],[x4]]

CSAT-input

x1 ∨ x2 ∨ x4

x2 ∨ x3

x4.

 [[1,-2,-4],[2,-3],[4]]

The assignment making all variables TRUE satisfies all
CSAT-inputs in which every clause has a positive literal.
(All definite clause KBs are satisfiable.)

From proofs to unsatisfiability:

KB proves ϕ︸ ︷︷ ︸ ⇐⇒ KB, ϕ︸ ︷︷ ︸ is not satisfiable

Prolog Horn (linear SAT)

31 / 32

https://www.scss.tcd.ie/Tim.Fernando/AI/csat.pdf


Prolog and SAT
Prolog KB (definite clauses)

x1 :- x2,x4.

x2 :- x3.

x4.

 [[x1,x2,x4],[x2,x3],[x4]]

CSAT-input

x1 ∨ x2 ∨ x4

x2 ∨ x3

x4.

 [[1,-2,-4],[2,-3],[4]]

The assignment making all variables TRUE satisfies all
CSAT-inputs in which every clause has a positive literal.
(All definite clause KBs are satisfiable.)

From proofs to unsatisfiability:

KB proves ϕ︸ ︷︷ ︸ ⇐⇒ KB, ϕ︸ ︷︷ ︸ is not satisfiable

Prolog Horn (linear SAT)

32 / 32

https://www.scss.tcd.ie/Tim.Fernando/AI/csat.pdf

