Back to computation as search

```prolog
search(Node) :- goal(Node).
search(Node) :- arc(Node,Next), search(Next).
```

More than one Next may satisfy arc(Node,Next) ⇝ non-determinism
Choose Next closest to goal (heuristic: best-first), keeping track of costs (min cost, A∗)
Available choices depend on arc-actions specified by Turing machine (graph)
Computation eliminates non-determinism (determinization)
Bound number of calls to arc (iterations of search)
Back to computation as search

\[
\text{search}(\text{Node}) :- \text{goal}(\text{Node}).
\]

\[
\text{search}(\text{Node}) :- \text{arc}(\text{Node}, \text{Next}), \text{search}(\text{Next}).
\]

More than one Next may satisfy \(\text{arc}(\text{Node}, \text{Next}) \)

\(\leadsto \) non-determinism
Back to computation as search

\[
\text{search(Node)} \leftarrow \text{goal(Node)}.
\]

\[
\text{search(Node)} \leftarrow \text{arc(Node,Next)}, \text{search(Next)}.
\]

More than one Next may satisfy \(\text{arc(Node,Next)} \)
\[\leadsto\] non-determinism

Choose Next closest to goal (heuristic: best-first),
keeping track of costs (min cost, A*)
Back to computation as search

\[
\text{search}(\text{Node}) :\text{-} \text{goal}(\text{Node}).
\]

\[
\text{search}(\text{Node}) :\text{-} \text{arc}(\text{Node},\text{Next}), \text{search}(\text{Next}).
\]

More than one \texttt{Next} may satisfy \texttt{arc(\text{Node},\text{Next})} \\
\Rightarrow \text{non-determinism}

Choose \texttt{Next} closest to goal (heuristic: best-first), \\
keeping track of costs (min cost, A*)

Available choices depend on \texttt{arc} \\
- actions specified by Turing machine (graph)
Back to computation as search

```
search(Node) :- goal(Node).
search(Node) :- arc(Node,Next), search(Next).
```

More than one `Next` may satisfy `arc(Node,Next)`

→ non-determinism

Choose `Next` closest to goal (heuristic: best-first),
keeping track of costs (min cost, A^*)

Available choices depend on `arc`
- actions specified by Turing machine (graph)

Computation eliminates non-determinism (determinization)
Back to computation as search

\[
\text{search(Node)} :- \text{goal(Node)}.
\]

\[
\text{search(Node)} :- \text{arc(Node,Next)}, \text{search(Next)}.
\]

More than one Next may satisfy \text{arc(Node,Next)}
\[\rightsquigarrow\] non-determinism

Choose Next closest to goal (heuristic: best-first),
keeping track of costs (min cost, A*)

Available choices depend on arc
- actions specified by Turing machine (graph)

Computation eliminates non-determinism (determinization)

Bound number of calls to arc (iterations of search)
Feasibility and non-determinism: P vs NP

Cobham’s Thesis

A problem is feasibly solvable iff some deterministic Turing machine (dTm) solves it in polynomial time.

\[P = \{ \text{problems a dTm solves in polynomial time} \} \]
Feasibility and non-determinism: P vs NP

Cobham’s Thesis

A problem is feasibly solvable iff some deterministic Turing machine (dTm) solves it in polynomial time.

\[P = \{ \text{problems a dTm solves in polynomial time} \} \]

\[NP = \{ \text{problems a non-deterministic Tm solves in polynomial time} \} \]

Clearly, \(P \subseteq NP \).

Whether \(P = NP \) is the most celebrated open mathematical problem in computer science.

\(P \neq NP \) would mean non-determinism wrecks feasibility.

\(P = NP \) says non-determinism makes no difference to feasibility.
Cobham’s Thesis
A problem is feasibly solvable iff some deterministic Turing machine (dTm) solves it in polynomial time.

\[P = \{ \text{problems a dTm solves in polynomial time} \} \]

\[NP = \{ \text{problems a non-deterministic Tm solves in polynomial time} \} \]

Clearly, \(P \subseteq NP \).
Feasibility and non-determinism: P vs NP

Cobham’s Thesis
A problem is feasibly solvable iff some deterministic Turing machine (dTm) solves it in polynomial time.

\[P = \{ \text{problems a dTm solves in polynomial time} \} \]

\[NP = \{ \text{problems a non-deterministic Tm solves in polynomial time} \} \]

Clearly, \(P \subseteq NP \).

Whether \(P = NP \) is the most celebrated open mathematical problem in computer science.
Feasibility and non-determinism: P vs NP

Cobham’s Thesis
A problem is feasibly solvable iff some deterministic Turing machine \((dTm)\) solves it in polynomial time.

\[P = \{ \text{problems a } dTm \text{ solves in polynomial time} \} \]

\[NP = \{ \text{problems a non-deterministic Tm solves in polynomial time} \} \]

Clearly, \(P \subseteq NP \).

Whether \(P = NP \) is the most celebrated open mathematical problem in computer science.

\(P \neq NP \) would mean non-determinism wrecks feasibility.
Feasibility and non-determinism: P vs NP

Cobham’s Thesis

A problem is feasibly solvable iff some deterministic Turing machine (dTm) solves it in polynomial time.

\[P = \{ \text{problems a dTm solves in polynomial time} \} \]

\[NP = \{ \text{problems a non-deterministic Tm solves in polynomial time} \} \]

Clearly, \(P \subseteq NP \).

Whether \(P = NP \) is the most celebrated open mathematical problem in computer science.

\(P \neq NP \) would mean non-determinism wrecks feasibility.

\(P = NP \) says non-determinism makes no difference to feasibility.

A closer look

Given a set L of strings, and a Tm M.
A closer look

Given a set L of strings, and a Tm M.

M solves L in time n^k if there is a fixed integer $c > 0$ such that for every string s of size n,

$$s \in L \iff M \text{ accepts } s \text{ within } c \cdot n^k \text{ steps}.$$
A closer look

Given a set L of strings, and a Tm M.

M solves L in time n^k if there is a fixed integer $c > 0$ such that for every string s of size n,

$$s \in L \iff M \text{ accepts } s \text{ within } c \cdot n^k \text{ steps.}$$

$$\text{TIME}(n^k) := \{L | \text{ some dTm solves } L \text{ in time } n^k\}$$

e.g. TIME(n) includes every regular language
A closer look

Given a set L of strings, and a Tm M.

M solves L in time n^k if there is a fixed integer $c > 0$ such that for every string s of size n,

$$s \in L \iff M \text{ accepts } s \text{ within } c \cdot n^k \text{ steps.}$$

$$\text{TIME}(n^k) := \{ L \mid \text{some dTm solves } L \text{ in time } n^k \}$$

e.g. TIME(n) includes every regular language

$$P := \bigcup_{k \geq 1} \text{TIME}(n^k)$$
A closer look

Given a set L of strings, and a Tm M.

M solves L in time n^k if there is a fixed integer $c > 0$ such that for every string s of size n,

$$s \in L \quad \text{iff} \quad M \text{ accepts } s \text{ within } c \cdot n^k \text{ steps}.$$

$$\text{TIME}(n^k) := \{ L \mid \text{some dTm solves } L \text{ in time } n^k \}$$

e.g. TIME(n) includes every regular language

$$P := \bigcup_{k \geq 1} \text{TIME}(n^k)$$

$$\text{NTIME}(n^k) := \{ L \mid \text{some nTm solves } L \text{ in time } n^k \}$$

$$NP := \bigcup_{k \geq 1} \text{NTIME}(n^k)$$
Boolean satisfiability (SAT)

SAT. Given a Boolean expression \(\varphi \) with variables \(x_1, \ldots, x_n \), can we make \(\varphi \) true by assigning true/false to \(x_1, \ldots, x_n \)?

e.g., \((x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor \overline{x_3}) \)
Boolean satisfiability (SAT)

SAT. Given a Boolean expression φ with variables x_1, \ldots, x_n, can we make φ true by assigning true/false to x_1, \ldots, x_n?

Checking that a particular assignment makes φ true is easy (P).

e.g., $\left(x_1 \lor \overline{x_2} \lor x_3 \right) \land \left(\overline{x_1} \lor \overline{x_3} \right)$
Boolean satisfiability (SAT)

SAT. Given a Boolean expression φ with variables x_1, \ldots, x_n, can we make φ true by assigning true/false to x_1, \ldots, x_n?

Checking that a particular assignment makes φ true is easy (P). Non-determinism (guessing the assignment) puts SAT in NP.

\[
e.g., (x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor \overline{x_3})
\]
Boolean satisfiability (SAT)

SAT. Given a Boolean expression φ with variables x_1, \ldots, x_n, can we make φ true by assigning true/false to x_1, \ldots, x_n?

Checking that a particular assignment makes φ true is easy (P). Non-determinism (guessing the assignment) puts SAT in NP. But is SAT in P? There are 2^n assignments to try.

e.g., $(x_1 \lor \overline{x}_2 \lor x_3) \land (\overline{x}_1 \lor \overline{x}_3)$
Boolean satisfiability (SAT)

SAT. Given a Boolean expression φ with variables x_1, \ldots, x_n, can we make φ true by assigning true/false to x_1, \ldots, x_n?

Checking that a particular assignment makes φ true is easy (P). Non-determinism (guessing the assignment) puts SAT in NP. But is SAT in P? There are 2^n assignments to try.

Cook-Levin Theorem. SAT is in P iff $P = NP$.

e.g., $(x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor \overline{x_3})$
Boolean satisfiability (SAT)

SAT. Given a Boolean expression \(\varphi \) with variables \(x_1, \ldots, x_n \), can we make \(\varphi \) true by assigning true/false to \(x_1, \ldots, x_n \)?

Checking that a particular assignment makes \(\varphi \) true is easy (\(P \)). Non-determinism (guessing the assignment) puts SAT in \(NP \). But is SAT in \(P \)? There are \(2^n \) assignments to try.

Cook-Levin Theorem. *SAT is in \(P \) iff \(P = NP \).*

\[
\text{e.g., } (x_1 \lor \overline{x}_2 \lor x_3) \land (\overline{x}_1 \lor \overline{x}_3)
\]

CSAT: \(\varphi \) is a conjunction of clauses, where a *clause* is an OR of literals, and a *literal* is a variable \(x_i \) or negated variable \(\overline{x}_i \).
Boolean satisfiability (SAT)

SAT. Given a Boolean expression φ with variables x_1, \ldots, x_n, can we make φ true by assigning true/false to x_1, \ldots, x_n?

Checking that a particular assignment makes φ true is easy (P). Non-determinism (guessing the assignment) puts SAT in NP. But is SAT in P? There are 2^n assignments to try.

Cook-Levin Theorem. *SAT is in P iff $P = NP$.*

\[e.g., (x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_3) \]

CSAT: φ is a conjunction of clauses, where a *clause* is an OR of literals, and a *literal* is a variable x_i or negated variable $\overline{x_i}$

k-SAT: every clause has exactly k literals

3-SAT is as hard as SAT, 2-SAT is in P
Boolean satisfiability (SAT)

SAT. Given a Boolean expression \(\varphi \) with variables \(x_1, \ldots, x_n \), can we make \(\varphi \) true by assigning true/false to \(x_1, \ldots, x_n \)?

Checking that a particular assignment makes \(\varphi \) true is easy (\(P \)). Non-determinism (guessing the assignment) puts SAT in \(NP \). But is SAT in \(P \)? There are \(2^n \) assignments to try.

Cook-Levin Theorem. \(SAT \) is in \(P \) iff \(P = NP \).

\[(x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor \overline{x_3}) \]

CSAT: \(\varphi \) is a conjunction of clauses, where a *clause* is an OR of literals, and a *literal* is a variable \(x_i \) or negated variable \(\overline{x_i} \)

k-SAT: every clause has exactly \(k \) literals

3-SAT is as hard as SAT, 2-SAT is in \(P \)

Horn-SAT: every clause has at most one positive literal — linear
Prolog and SAT

Prolog KB (definite clauses)

\[
x_1 \leftarrow x_2, x_4.
\]

\[
x_2 \leftarrow x_3.
\]

\[
\Rightarrow \quad [[x_1, x_2, x_4], [x_2, x_3], [x_4]]
\]

The assignment making all variables TRUE satisfies all CSAT-inputs in which every clause has a positive literal.

(All definite clause KBs are satisfiable.)

From proofs to unsatisfiability:

\[\text{KB proves } \phi \models \neg \neg \phi \iff \text{KB}, \phi \models \neg \neg \phi\]

Prolog Horn (linear SAT)
Prolog and SAT

Prolog KB (definite clauses)
\[
\begin{align*}
x_1 & : - x_2, x_4. \\
x_2 & : - x_3. \quad \implies \quad [[[x_1, x_2, x_4], [x_2, x_3], [x_4]] \\
x_4.
\end{align*}
\]

CSAT-input
\[
\begin{align*}
x_1 \lor \overline{x_2} \lor \overline{x_4} \\
x_2 \lor \overline{x_3} \quad \implies \quad [[[1, -2, -4], [2, -3], [4]] \\
x_4.
\end{align*}
\]
Prolog and SAT

Prolog KB (definite clauses)
\[x1 \leftarrow x2, x4. \]
\[x2 \leftarrow x3. \]
\[x4. \]
\[\Rightarrow [[[x1, x2, x4], [x2, x3], [x4]]] \]

CSAT-input
\[x1 \lor \overline{x2} \lor \overline{x4} \]
\[x2 \lor \overline{x3} \]
\[\Rightarrow [[[1, -2, -4], [2, -3], [4]]] \]
\[x4. \]

The assignment making all variables TRUE satisfies all CSAT-inputs in which every clause has a positive literal. (All definite clause KBs are satisfiable.)
Prolog and SAT

Prolog KB (definite clauses)

\[
x_1 :\neg x_2, x_4.
\]

\[
x_2 :\neg x_3.
\]

\[\mapsto [[x_1, x_2, x_4], [x_2, x_3], [x_4]]
\]

x_4.

CSAT-input

\[
x_1 \lor \overline{x_2} \lor \overline{x_4}
\]

\[
x_2 \lor \overline{x_3}
\]

\[\mapsto [[1, -2, -4], [2, -3], [4]]
\]

x_4.

The assignment making all variables TRUE satisfies all CSAT-inputs in which every clause has a positive literal. (All definite clause KBs are satisfiable.)

From proofs to unsatisfiability:

\[\text{KB proves } \varphi \text{ iff } \text{KB, } \overline{\varphi} \text{ is not satisfiable}\]

Prolog Horn (linear SAT)