

Coláiste na Tríonóide, Baile Átha Cliath Trinity College Dublin

Ollscoil Átha Cliath | The University of Dublin

Faculty of Engineering, Mathematics & Science School of Computer Science & Statistics

Integrated Computer Science Computer Science & Business Computer Science & Language Mathematics Sample

Artificial Intelligence 1

Mon, 29 Apr 2024	RDS-SIM COURT	14:00 - 16:00
	Dr Tim Fernando	

Instructions to Candidates:

Answer both questions. Each question is 50 points (for a total of 100).

You may not start this examination until you are instructed to do so by the Invigilator.

Materials permitted for this examination:

Non-programmable calculators are permitted for this examination — please indicate the make and model of your calculator on each answer book used.

Question Q1 This question is about searching a graph for a path from a given node Start to some goal node. The predicate frontierSearch/1 below outlines a general approach on which to add definitions of goal/1, arc/2 and add2frontier/3.

(a) Revise frontierSearch(+Frontier) to froSearch(+Frontier,?Path) so that froSearch([[Start]],Path) returns a Path from Start to a goal node (initializing the frontier to the list [[Start]] consisting of one path [Start]). As with the definition of frontierSearch above, leave the predicates goal/1, arc/2 and add2frontier/3 unspecified.

[5 marks]

- (b) To define add2frontier, recall that A-star uses two functions, *cost* and *h*, to assign each arc a cost, and each node a heuristic estimate of its distance to a goal node.
 - (i) One way to define distance between nodes is the minimum cost of a path between the nodes. How is the cost of a path computed from costs of arcs?

[4 marks]

(ii) True or False: If the heuristic estimate of every node is 0, then A-star does a *min-cost* search.

[3 marks]

(iii) How can we define the functions *cost* and *h* so that on these functions, A-star does *depth-first* search?

[4 marks]

(iv) True or False: if A-star searches breadth-first then A-star is admissible.

[4 marks]

 (v) True or False: If the heuristic function *h over*estimates the cost of a path to a goal node, then A-star is not admissible. Briefly explain your answer.

[7 marks]

(c) Recall from Homework 1 that a propositional Prolog knowledge base such as

q:- a. q:- b,c. b:- c. c.

can be represented as the list

[[q,a],[q,b,c],[b,c],[c]]

and used as KB in arc(Node,Next,KB) to pick out arcs (Node,Next) along which Prolog tries to find a path to [] (the goal node), where

arc([H|T],Node,KB) :- member([H|B],KB), append(B,T,Node).

Thus, we can analyze the Prolog query ?-q against the knowledge base above as a search for a path from the node [q] to []. The arc from [q] to [a] fails to lead to a path to [] because

(†) there is no arc from [a] (i.e., no member of KB has head a)

whereas the arc from [q] to [b,c] leads to the path

[q], [b,c], [c,c], [c], []

which we can shorten to

[q], [b,c], [c], []

if we replace arc(Node,Next,KB) by arc2(Node,Next,KB) to reduce Next to a set (without repeating members) as in

Line (†) above suggests revising arc2(Node,Next,KB) further to

arc3(Node,Next,KB) :- arc2(Node,Next,KB),

allHeads(Next,KB).

allHeads([],_).

allHeads([H|T],KB):- member([H|_],KB), allHeads(T,KB).

That is, arc3(Node, Next, KB) implies Next is a set of heads of members of KB.

- (i) Which of (A), (B) and (C), if any, are true for all instantiations of Node, Next and KB?
 - (A) arc3(Node,Next,KB) implies arc2(Node,Next,KB)
 - (B) arc2(Node,Next,KB) implies arc(Node,Next,KB)
 - (C) arc3(Node,Next,KB) implies arc(Node,Next,KB)

[5 marks]

(ii) True or False: if arc3(Node, Next, KB) then there is a path from Next to[] along arcs satisfying arc3. Briefly explain your answer.

[5 marks]

(iii) True or False: if there is a path of length k from Start to [] along arcs satisfying the predicate arc, then there is a path of length ≤ k from Start to [] along arcs satisfying arc3. Briefly explain your answer.

[5 marks]

(d) Recall that a Constraint Satisfaction Problem is a triple [Var, Dom, Con] consisting of a list Var = [X₁,..., X_n] of variables X_i, a list Dom = [D₁,..., D_n] of finite sets D_i of size s_i, and a finite set Con of constraints that may or may not be satisfied by a node instantiating X_i with a value in D_i for a search space of size ∏ⁿ_{i=1} s_i. Briefly explain what is gained by enlarging that search space to ∏ⁿ_{i=1}(s_i + 1) by allowing a variable to be un-instantiated.

[8 marks]

Question Q2

(a) What is the decision that an MDP is set up to analyze?

[4 marks]

(b) True or False: in a MDP $\langle S, A, p, r, \gamma \rangle$, an agent can do any action $a \in A$ at any state $s \in S$ to reach any state $s' \in S$ for an immediate reward of r(s, a, s'). Briefly explain your answer.

[4 marks]

(c) In an MDP $\langle S, A, p, r, \gamma \rangle$ with discount factor $\gamma = 0$, what action $a \in A$ should an agent do at a state $s \in S$?

[4 marks]

(d) The remainder of Q2 is about a baby variant of the grid from Homework 2, reduced from 5×5 to 3×3 , and differing in other respects. To be precise, let us fix a discount factor $\gamma = .9$ and flesh out an MDP $\langle S, A, p, r, .9 \rangle$ where a state $s \in S$ is a (row,column)-pair of integers from $\{1, 2, 3\}$, an action $a \in A$ is one of: up, down, left, right

$S = \{1, 2, 2\} \times \{1, 2, 2\}$	(1,1)	(1,2)
$S = \{1, 2, 5\} \times \{1, 2, 5\}$	(2,1)	(2,2)
$A = \{$ up, down, left, right $\}$	(3,1)	(3,2)

and every immediate reward r(s, a, s') is 0 unless s' is either (2,2) for a losing -1or (3,3) for a winning +1

	−1	if $s' = (2, 2)$
$r(s, a, s') = \langle$	+1	if $s' = (3, 3)$
l	0	otherwise

-1	
	+1

(1,3)

(2,3)

(3,3)

which leaves transition probabilities p(s, a, s') to be specified below.

(i) Recall that the optimal γ -discounted reward Q(s, a) can be approximated by value iterations $q_n(s, a)$ converging to it at the limit

$$Q(s,a) = \lim_{n\to\infty} q_n(s,a)$$

where $q_0(s, a)$ is the expected immediate reward for doing a at s, and for $n \ge 0$,

$$q_{n+1}(s, a) = \sum_{s'} p(s, a, s')(r(s, a, s') + \gamma \max_{a'} q_n(s', a')).$$

What is the formula for $q_0(s, a)$?

[5 marks]

(ii) Let us suppose that if s is either (2,2) or (3,3) then for every action a, p(s, a, s) = 1. What are $q_n((2, 2), a)$ and $q_n((3, 3), a)$ for every integer $n \ge 0$?

[9 marks]

(iii) Let us turn next to a state s different from (2,2) and (3,3). If s has a square in the direction of an action a from it (in the 3×3 grid), let s_a be that state; otherwise, let s_a be s. For example,

 $(1,1)_{right} = (1,2) \ \, \text{but} \ \, (1,1)_{left} = (1,1)_{up} = (1,1).$

Now, suppose

$$p(s, a, s_a) = 1$$
 for every $a \in A$ and $s \in S$ different from (2,2) and (3,3).

What are $q_n((2,3),\text{left})$ and $q_n((2,3),\text{down})$ for every integer $n \ge 0$?

[9 marks]

- (e) The notion of a random variable can be formalized using three distinct but related notions:
 - (i) the probability measure $\mu(S)$ of a set S of possible worlds
 - (ii) the probability $P(\alpha)$ of a proposition α
 - (iii) the probability distribution P_X of a variable X.

How do these three notions differ and what do they have in common? How are they inter-related?

[15 marks]