Coláiste na Tríonóide, Baile Átha Cliath Trinity College Dublin
Ollscoil Átha Cliath | The University of Dublin

Faculty of Engineering, Mathematics \& Science
 School of Computer Science \& Statistics

Integrated Computer Science Sample
Computer Science \& Business
Computer Science \& Language
Mathematics

Artificial Intelligence 1

Mon, 29 Apr 2024
RDS-SIM COURT
14:00-16:00

Dr Tim Fernando

Instructions to Candidates:
Answer both questions. Each question is 50 points (for a total of 100).
You may not start this examination until you are instructed to do so by the Invigilator.

Materials permitted for this examination:
Non-programmable calculators are permitted for this examination - please indicate the make and model of your calculator on each answer book used.

Question Q1 This question is about searching a graph for a path from a given node Start to some goal node. The predicate frontierSearch/1 below outlines a general approach on which to add definitions of goal/1, arc/2 and add2frontier/3.

```
search(Start):- frontierSearch([Start]).
frontierSearch([Nodel_]):- goal(Node).
frontierSearch([Node|More]):- findall(Next,arc(Node,Next),Children),
    add2frontier(Children,More,New),
    frontierSearch(New).
```

(a) Revise frontierSearch(+Frontier) to froSearch(+Frontier,?Path) so that froSearch ([[Start]], Path) returns a Path from Start to a goal node (initializing the frontier to the list [[Start]] consisting of one path [Start]). As with the definition of frontierSearch above, leave the predicates goal/1, arc/2 and add2frontier/3 unspecified.
[5 marks]
(b) To define add2frontier, recall that A-star uses two functions, cost and h, to assign each arc a cost, and each node a heuristic estimate of its distance to a goal node.
(i) One way to define distance between nodes is the minimum cost of a path between the nodes. How is the cost of a path computed from costs of arcs?
[4 marks]
(ii) True or False: If the heuristic estimate of every node is 0 , then A -star does a min-cost search.
(iii) How can we define the functions cost and h so that on these functions, A-star does depth-first search?
(iv) True or False: if A-star searches breadth-first then A-star is admissible.
[4 marks]
(v) True or False: If the heuristic function h overestimates the cost of a path to a goal node, then A-star is not admissible. Briefly explain your answer.
(c) Recall from Homework 1 that a propositional Prolog knowledge base such as

$$
\begin{aligned}
& q:-a . \\
& q:-\quad b, c . \\
& b:-c . \\
& c .
\end{aligned}
$$

can be represented as the list

$$
[[\mathrm{q}, \mathrm{a}],[\mathrm{q}, \mathrm{~b}, \mathrm{c}],[\mathrm{b}, \mathrm{c}],[\mathrm{c}]]
$$

and used as KB in arc (Node, Next, KB) to pick out arcs (Node, Next) along which Prolog tries to find a path to [] (the goal node), where

```
arc([H|T],Node,KB) :- member([H|B],KB), append(B,T,Node).
```

Thus, we can analyze the Prolog query ?-q against the knowledge base above as a search for a path from the node [q] to []. The arc from [q] to [a] fails to lead to a path to [] because
(\dagger) there is no arc from [a] (i.e., no member of $K B$ has head a)
whereas the arc from [q] to $[b, c]$ leads to the path

$$
[q],[b, c],[c, c],[c],[]
$$

which we can shorten to

$$
[\mathrm{q}],[\mathrm{b}, \mathrm{c}],[\mathrm{c}],[]
$$

if we replace arc (Node, Next, KB) by $\operatorname{arc} 2$ (Node, Next, KB) to reduce Next to a set (without repeating members) as in

```
arc2(Node,Next,KB) :- arc(Node,Nx,KB),
    makeSet(Nx,Next).
makeSet([],[]).
makeSet(List,Set) :- setof(X,member(X,List),Set).
```

Line (\dagger) above suggests revising arc2(Node, Next, KB) further to

```
arc3(Node,Next,KB) :- arc2(Node,Next,KB),
    allHeads(Next,KB).
allHeads([],_).
allHeads([H|T],KB):- member([H|_],KB), allHeads(T,KB).
```

That is, $\operatorname{arc3}$ (Node, Next, KB) implies Next is a set of heads of members of KB.
(i) Which of (A), (B) and (C), if any, are true for all instantiations of Node, Next and KB?
(A) $\operatorname{arc3(Node,Next,KB)~implies~arc2(Node,Next,KB)~}$
(B) $\operatorname{arc} 2($ Node, Next, KB) implies arc (Node, Next, KB)
(C) $\operatorname{arc3(Node,Next,KB)~implies~arc(Node,~Next,~KB)~}$
(ii) True or False: if $\operatorname{arc3(Node,Next,KB)~then~there~is~a~path~from~Next~to~}$ [] along arcs satisfying arc3. Briefly explain your answer.
(iii) True or False: if there is a path of length k from Start to [] along arcs satisfying the predicate arc, then there is a path of length $\leq k$ from Start to [] along arcs satisfying arc3. Briefly explain your answer.
(d) Recall that a Constraint Satisfaction Problem is a triple [Var, Dom, Con] consisting of a list Var $=\left[X_{1}, \ldots, X_{n}\right]$ of variables X_{i}, a list Dom $=$ [D_{1}, \ldots, D_{n}] of finite sets D_{i} of size s_{i}, and a finite set Con of constraints that may or may not be satisfied by a node instantiating X_{i} with a value in D_{i} for a search space of size $\prod_{i=1}^{n} s_{i}$. Briefly explain what is gained by enlarging that search space to $\prod_{i=1}^{n}\left(s_{i}+1\right)$ by allowing a variable to be un-instantiated.

Question Q2

(a) What is the decision that an MDP is set up to analyze?
[4 marks]
(b) True or False: in a MDP $\langle S, A, p, r, \gamma\rangle$, an agent can do any action $a \in A$ at any state $s \in S$ to reach any state $s^{\prime} \in S$ for an immediate reward of $r\left(s, a, s^{\prime}\right)$.
Briefly explain your answer.
(c) In an MDP $\langle S, A, p, r, \gamma\rangle$ with discount factor $\gamma=0$, what action $a \in A$ should an agent do at a state $s \in S$?
(d) The remainder of Q2 is about a baby variant of the grid from Homework 2, reduced from 5×5 to 3×3, and differing in other respects. To be precise, let us fix a discount factor $\gamma=.9$ and flesh out an $\operatorname{MDP}\langle S, A, p, r, .9\rangle$ where a state $s \in S$ is a (row,column)-pair of integers from $\{1,2,3\}$, an action $a \in A$ is one of: up, down, left, right

$$
\begin{aligned}
& S=\{1,2,3\} \times\{1,2,3\} \\
& A=\{\text { up, down, left, right }\}
\end{aligned}
$$

$(1,1)$	$(1,2)$	$(1,3)$
$(2,1)$	$(2,2)$	$(2,3)$
$(3,1)$	$(3,2)$	$(3,3)$

and every immediate reward $r\left(s, a, s^{\prime}\right)$ is 0 unless s^{\prime} is either $(2,2)$ for a losing -1 or $(3,3)$ for a winning +1

$$
r\left(s, a, s^{\prime}\right)=\left\{\begin{aligned}
-1 & \text { if } s^{\prime}=(2,2) \\
+1 & \text { if } s^{\prime}=(3,3) \\
0 & \text { otherwise }
\end{aligned}\right.
$$

	-1	
		+1

which leaves transition probabilities $p\left(s, a, s^{\prime}\right)$ to be specified below.
(i) Recall that the optimal γ-discounted reward $Q(s, a)$ can be approximated by value iterations $q_{n}(s, a)$ converging to it at the limit

$$
Q(s, a)=\lim _{n \rightarrow \infty} q_{n}(s, a)
$$

where $q_{0}(s, a)$ is the expected immediate reward for doing a at s, and for $n \geq 0$,

$$
q_{n+1}(s, a)=\sum_{s^{\prime}} p\left(s, a, s^{\prime}\right)\left(r\left(s, a, s^{\prime}\right)+\gamma \max _{a^{\prime}} q_{n}\left(s^{\prime}, a^{\prime}\right)\right) .
$$

What is the formula for $q_{0}(s, a)$?
(ii) Let us suppose that if s is either $(2,2)$ or $(3,3)$ then for every action a, $p(s, a, s)=1$. What are $q_{n}((2,2), a)$ and $q_{n}((3,3), a)$ for every integer $n \geq 0$?
[9 marks]
(iii) Let us turn next to a state s different from $(2,2)$ and $(3,3)$. If s has a square in the direction of an action a from it (in the 3×3 grid), let s_{a} be that state; otherwise, let s_{a} be s. For example,

$$
(1,1)_{\text {right }}=(1,2) \text { but }(1,1)_{\text {left }}=(1,1)_{\text {up }}=(1,1) .
$$

Now, suppose

$$
p\left(s, a, s_{a}\right)=1 \text { for every } a \in A \text { and } s \in S \text { different from }(2,2) \text { and }(3,3) .
$$

What are $q_{n}((2,3)$, left $)$ and $q_{n}((2,3)$,down $)$ for every integer $n \geq 0$?
(e) The notion of a random variable can be formalized using three distinct but related notions:
(i) the probability measure $\mu(S)$ of a set S of possible worlds
(ii) the probability $P(\alpha)$ of a proposition α
(iii) the probability distribution P_{X} of a variable X.

How do these three notions differ and what do they have in common? How are they inter-related?

