How to find it

A* spend as little as possible, hoping for the best

min cost h underestimates

1/22



How to live

A* spend as little as possible, hoping for the best

min cost h underestimates

© enjoy the ride, mindful of where you're going

max reward apply h to arc

2/22



How to live

A* spend as little as possible, hoping for the best

min cost h underestimates

© enjoy the ride, mindful of where you're going

max reward apply h to arc

TAKE A CHANCE ON ME

3/22



How to live

A* spend as little as possible, hoping for the best

min cost h underestimates

© enjoy the ride, mindful of where you're going

max reward apply h to arc

'I Y A cynic is a man

who knows the
price of
everything but
the value of

« nothing.

TAKE A CHANCE ON ME

4/22



How to live

A* spend as little as possible, hoping for the best

min cost h underestimates

© enjoy the ride, mindful of where you're going

max reward apply h to arc

TAKEA CHANCE ON ME

Ever tried.
Ever failed.
No matter.
Try again.
Fail again.

Fail better.
Becke

5/22



Arcs and goals at minimal costs
search(Node) :- goal(Node).
search(Node) :- arc(Node,Next), search(Next).

6/22



Arcs and goals at minimal costs
search(Node) :- goal(Node).
search(Node) :- arc(Node,Next), search(Next).

» Arcs have costs that add up in a path

7/22



Arcs and goals at minimal costs
search(Node) :- goal(Node).
search(Node) :- arc(Node,Next), search(Next).

» Arcs have costs that add up in a path
» For arc-cost = 1, minimize sum ~» breadth-first

8/22



Arcs and goals at minimal costs
search(Node) :- goal(Node).
search(Node) :- arc(Node,Next), search(Next).

» Arcs have costs that add up in a path

» For arc-cost = 1, minimize sum ~- breadth-first
maximize sum ~- depth-first

» Minimize costs through costly exhaustive search:

9/22



Arcs and goals at minimal costs
search(Node) :- goal(Node).
search(Node) :- arc(Node,Next), search(Next).

» Arcs have costs that add up in a path
» For arc-cost = 1, minimize sum ~- breadth-first
maximize sum ~- depth-first
» Minimize costs through costly exhaustive search:
a tree with branching factor b has
n
bl —1
1+ b+ b+ b2+ b =) b= ———
k=0
since s, + "1 =1 + bs,
=2 —1forb=2

nodes of depth < n.

10/22



Arcs and goals at minimal costs
search(Node) :- goal(Node).
search(Node) :- arc(Node,Next), search(Next).

» Arcs have costs that add up in a path
» For arc-cost = 1, minimize sum ~- breadth-first
maximize sum ~- depth-first
» Minimize costs through costly exhaustive search:
a tree with branching factor b has

L4+ b+ b+ b2+ b =) b =
k=0
since s, + "1 =1 + bs,
=21 _1forb=2

nodes of depth < n.
» FSM accept is depth-first:

n arcs from [q0,[a1 - - - a,]] to [q,[]] for final q.
Prolog also searches depth-first (for speed).

11/22



Estimating the cost of a path to a goal

A*: choose Node in frontier, minimizing

cost(Start...Node) + h(Node)

12/22



Estimating the cost of a path to a goal

A*: choose Node in frontier, minimizing

cost(Start...Node) + h(Node)

A* tweaks breadth-first (searching exhaustively) assuming
(1) arc-costs > 0
(2) h under-estimates the cost of a path to a goal

and finite branching.

13/22



Estimating the cost of a path to a goal

A*: choose Node in frontier, minimizing

cost(Start...Node) + h(Node)

A* tweaks breadth-first (searching exhaustively) assuming
(1) arc-costs > 0
(2) h under-estimates the cost of a path to a goal

and finite branching.

Min-cost becomes depth-first if arc-cost = —1 and h =0

14/22



Estimating the cost of a path to a goal

A*: choose Node in frontier, minimizing

cost(Start...Node) + h(Node)

A* tweaks breadth-first (searching exhaustively) assuming
(1) arc-costs > 0
(2) h under-estimates the cost of a path to a goal

and finite branching.

Min-cost becomes depth-first if arc-cost = —1 and h =0,

violating 2 of 3 conditions sufficient (together) for admissibility:

» for some fixed § > 0, arc-costs > ¢

15/22



Estimating the cost of a path to a goal

A*: choose Node in frontier, minimizing

cost(Start...Node) + h(Node)

A* tweaks breadth-first (searching exhaustively) assuming
(1) arc-costs > 0
(2) h under-estimates the cost of a path to a goal

and finite branching.

Min-cost becomes depth-first if arc-cost = —1 and h =0,
violating 2 of 3 conditions sufficient (together) for admissibility:

» for some fixed § > 0, arc-costs > ¢

» h under-estimates cost of path to goal.

16/22



Rewarding exploration

Life is too short for timid, cost-driven search

17/22



Rewarding exploration

Life is too short for timid, cost-driven search

SHIFTING PERSPECTIVES:

» costly arc ~» rewarding move

18/22



Rewarding exploration

Life is too short for timid, cost-driven search

SHIFTING PERSPECTIVES:
» costly arc ~» rewarding move

» minimize costs ~~ maximize reward
for reward = —cost,
min cost ~ max reward

19/22



Rewarding exploration

Life is too short for timid, cost-driven search

SHIFTING PERSPECTIVES:
» costly arc ~» rewarding move

» minimize costs ~~ maximize reward
for reward = —cost,
min cost ~ max reward

> let goal affect arc reward (goal-directed search),
mixing destination (goal) with journey (arc)

20/22



Rewarding exploration

Life is too short for timid, cost-driven search

SHIFTING PERSPECTIVES:
» costly arc ~» rewarding move

P> minimize costs ~» maximize reward
for reward = —cost,
min cost &~ max reward
> let goal affect arc reward (goal-directed search),
mixing destination (goal) with journey (arc)

» frontier search from start ~~ back up from goal
from branching factor b = 2 to future discount b = %

21/22



Rewarding exploration

Life is too short for timid, cost-driven search

SHIFTING PERSPECTIVES:
» costly arc ~» rewarding move

» minimize costs ~~ maximize reward
for reward = —cost,
min cost ~ max reward

> let goal affect arc reward (goal-directed search),
mixing destination (goal) with journey (arc)
» frontier search from start ~~ back up from goal
from branching factor b = 2 to future discount b = %

approximate reward
H= lim H,

n—oo

by looking n steps ahead H,
— learning by incrementing n

22/22



