
How to find it

A? spend as little as possible︸ ︷︷ ︸, hoping for the best︸ ︷︷ ︸
min cost h underestimates

© enjoy the ride︸ ︷︷ ︸, mindful of where you’re going︸ ︷︷ ︸
max reward apply h to arc

1 / 22

How to live

A? spend as little as possible︸ ︷︷ ︸, hoping for the best︸ ︷︷ ︸
min cost h underestimates

© enjoy the ride︸ ︷︷ ︸, mindful of where you’re going︸ ︷︷ ︸
max reward apply h to arc

2 / 22

How to live

A? spend as little as possible︸ ︷︷ ︸, hoping for the best︸ ︷︷ ︸
min cost h underestimates

© enjoy the ride︸ ︷︷ ︸, mindful of where you’re going︸ ︷︷ ︸
max reward apply h to arc

3 / 22

How to live

A? spend as little as possible︸ ︷︷ ︸, hoping for the best︸ ︷︷ ︸
min cost h underestimates

© enjoy the ride︸ ︷︷ ︸, mindful of where you’re going︸ ︷︷ ︸
max reward apply h to arc

4 / 22

How to live

A? spend as little as possible︸ ︷︷ ︸, hoping for the best︸ ︷︷ ︸
min cost h underestimates

© enjoy the ride︸ ︷︷ ︸, mindful of where you’re going︸ ︷︷ ︸
max reward apply h to arc

5 / 22

Arcs and goals at minimal costs
search(Node) :- goal(Node).

search(Node) :- arc(Node,Next), search(Next).

I Arcs have costs that add up in a path
I For arc-cost = 1, minimize sum breadth-first

maximize sum depth-first
I Minimize costs through costly exhaustive search:

a tree with branching factor b has

1 + b + b2 + b3 + · · · + bn =
n∑

k=0

bk =
bn+1 − 1

b − 1

since sn + bn+1 = 1 + bsn

= 2n+1 − 1 for b = 2

nodes of depth ≤ n.
I FSM accept is depth-first:

n arcs from [q0,[a1 · · · an]] to [q,[]] for final q.

Prolog also searches depth-first (for speed).

6 / 22

Arcs and goals at minimal costs
search(Node) :- goal(Node).

search(Node) :- arc(Node,Next), search(Next).

I Arcs have costs that add up in a path

I For arc-cost = 1, minimize sum breadth-first
maximize sum depth-first

I Minimize costs through costly exhaustive search:
a tree with branching factor b has

1 + b + b2 + b3 + · · · + bn =
n∑

k=0

bk =
bn+1 − 1

b − 1

since sn + bn+1 = 1 + bsn

= 2n+1 − 1 for b = 2

nodes of depth ≤ n.
I FSM accept is depth-first:

n arcs from [q0,[a1 · · · an]] to [q,[]] for final q.

Prolog also searches depth-first (for speed).

7 / 22

Arcs and goals at minimal costs
search(Node) :- goal(Node).

search(Node) :- arc(Node,Next), search(Next).

I Arcs have costs that add up in a path
I For arc-cost = 1, minimize sum breadth-first

maximize sum depth-first
I Minimize costs through costly exhaustive search:

a tree with branching factor b has

1 + b + b2 + b3 + · · · + bn =
n∑

k=0

bk =
bn+1 − 1

b − 1

since sn + bn+1 = 1 + bsn

= 2n+1 − 1 for b = 2

nodes of depth ≤ n.
I FSM accept is depth-first:

n arcs from [q0,[a1 · · · an]] to [q,[]] for final q.

Prolog also searches depth-first (for speed).

8 / 22

Arcs and goals at minimal costs
search(Node) :- goal(Node).

search(Node) :- arc(Node,Next), search(Next).

I Arcs have costs that add up in a path
I For arc-cost = 1, minimize sum breadth-first

maximize sum depth-first
I Minimize costs through costly exhaustive search:

a tree with branching factor b has

1 + b + b2 + b3 + · · · + bn =
n∑

k=0

bk =
bn+1 − 1

b − 1

since sn + bn+1 = 1 + bsn

= 2n+1 − 1 for b = 2

nodes of depth ≤ n.
I FSM accept is depth-first:

n arcs from [q0,[a1 · · · an]] to [q,[]] for final q.

Prolog also searches depth-first (for speed).

9 / 22

Arcs and goals at minimal costs
search(Node) :- goal(Node).

search(Node) :- arc(Node,Next), search(Next).

I Arcs have costs that add up in a path
I For arc-cost = 1, minimize sum breadth-first

maximize sum depth-first
I Minimize costs through costly exhaustive search:

a tree with branching factor b has

1 + b + b2 + b3 + · · · + bn =
n∑

k=0

bk =
bn+1 − 1

b − 1

since sn + bn+1 = 1 + bsn

= 2n+1 − 1 for b = 2

nodes of depth ≤ n.

I FSM accept is depth-first:

n arcs from [q0,[a1 · · · an]] to [q,[]] for final q.

Prolog also searches depth-first (for speed).

10 / 22

Arcs and goals at minimal costs
search(Node) :- goal(Node).

search(Node) :- arc(Node,Next), search(Next).

I Arcs have costs that add up in a path
I For arc-cost = 1, minimize sum breadth-first

maximize sum depth-first
I Minimize costs through costly exhaustive search:

a tree with branching factor b has

1 + b + b2 + b3 + · · · + bn =
n∑

k=0

bk =
bn+1 − 1

b − 1

since sn + bn+1 = 1 + bsn

= 2n+1 − 1 for b = 2

nodes of depth ≤ n.
I FSM accept is depth-first:

n arcs from [q0,[a1 · · · an]] to [q,[]] for final q.

Prolog also searches depth-first (for speed).
11 / 22

Estimating the cost of a path to a goal

A?: choose Node in frontier, minimizing

cost(Start . . . Node) + h(Node)

A? tweaks breadth-first (searching exhaustively) assuming

(1) arc-costs > 0

(2) h under-estimates the cost of a path to a goal

and finite branching.

Min-cost becomes depth-first if arc-cost = −1 and h = 0,
violating 2 of 3 conditions sufficient (together) for admissibility:

I for some fixed δ > 0, arc-costs > δ

I h under-estimates cost of path to goal.

12 / 22

Estimating the cost of a path to a goal

A?: choose Node in frontier, minimizing

cost(Start . . . Node) + h(Node)

A? tweaks breadth-first (searching exhaustively) assuming

(1) arc-costs > 0

(2) h under-estimates the cost of a path to a goal

and finite branching.

Min-cost becomes depth-first if arc-cost = −1 and h = 0,
violating 2 of 3 conditions sufficient (together) for admissibility:

I for some fixed δ > 0, arc-costs > δ

I h under-estimates cost of path to goal.

13 / 22

Estimating the cost of a path to a goal

A?: choose Node in frontier, minimizing

cost(Start . . . Node) + h(Node)

A? tweaks breadth-first (searching exhaustively) assuming

(1) arc-costs > 0

(2) h under-estimates the cost of a path to a goal

and finite branching.

Min-cost becomes depth-first if arc-cost = −1 and h = 0

,
violating 2 of 3 conditions sufficient (together) for admissibility:

I for some fixed δ > 0, arc-costs > δ

I h under-estimates cost of path to goal.

14 / 22

Estimating the cost of a path to a goal

A?: choose Node in frontier, minimizing

cost(Start . . . Node) + h(Node)

A? tweaks breadth-first (searching exhaustively) assuming

(1) arc-costs > 0

(2) h under-estimates the cost of a path to a goal

and finite branching.

Min-cost becomes depth-first if arc-cost = −1 and h = 0,
violating 2 of 3 conditions sufficient (together) for admissibility:

I for some fixed δ > 0, arc-costs > δ

I h under-estimates cost of path to goal.

15 / 22

Estimating the cost of a path to a goal

A?: choose Node in frontier, minimizing

cost(Start . . . Node) + h(Node)

A? tweaks breadth-first (searching exhaustively) assuming

(1) arc-costs > 0

(2) h under-estimates the cost of a path to a goal

and finite branching.

Min-cost becomes depth-first if arc-cost = −1 and h = 0,
violating 2 of 3 conditions sufficient (together) for admissibility:

I for some fixed δ > 0, arc-costs > δ

I h under-estimates cost of path to goal.

16 / 22

Rewarding exploration

Life is too short for timid, cost-driven search

Shifting perspectives:

I costly arc rewarding move

I minimize costs maximize reward
for reward = −cost,

min cost ≈ max reward

I let goal affect arc reward (goal-directed search),
mixing destination (goal) with journey (arc)

I frontier search from start back up from goal
from branching factor b = 2 to future discount b = 1

2
approximate reward

H = lim
n→∞

Hn

by looking n steps ahead Hn

— learning by incrementing n

17 / 22

Rewarding exploration

Life is too short for timid, cost-driven search

Shifting perspectives:

I costly arc rewarding move

I minimize costs maximize reward
for reward = −cost,

min cost ≈ max reward

I let goal affect arc reward (goal-directed search),
mixing destination (goal) with journey (arc)

I frontier search from start back up from goal
from branching factor b = 2 to future discount b = 1

2
approximate reward

H = lim
n→∞

Hn

by looking n steps ahead Hn

— learning by incrementing n

18 / 22

Rewarding exploration

Life is too short for timid, cost-driven search

Shifting perspectives:

I costly arc rewarding move

I minimize costs maximize reward
for reward = −cost,

min cost ≈ max reward

I let goal affect arc reward (goal-directed search),
mixing destination (goal) with journey (arc)

I frontier search from start back up from goal
from branching factor b = 2 to future discount b = 1

2
approximate reward

H = lim
n→∞

Hn

by looking n steps ahead Hn

— learning by incrementing n

19 / 22

Rewarding exploration

Life is too short for timid, cost-driven search

Shifting perspectives:

I costly arc rewarding move

I minimize costs maximize reward
for reward = −cost,

min cost ≈ max reward

I let goal affect arc reward (goal-directed search),
mixing destination (goal) with journey (arc)

I frontier search from start back up from goal
from branching factor b = 2 to future discount b = 1

2
approximate reward

H = lim
n→∞

Hn

by looking n steps ahead Hn

— learning by incrementing n

20 / 22

Rewarding exploration

Life is too short for timid, cost-driven search

Shifting perspectives:

I costly arc rewarding move

I minimize costs maximize reward
for reward = −cost,

min cost ≈ max reward

I let goal affect arc reward (goal-directed search),
mixing destination (goal) with journey (arc)

I frontier search from start back up from goal
from branching factor b = 2 to future discount b = 1

2

approximate reward
H = lim

n→∞
Hn

by looking n steps ahead Hn

— learning by incrementing n

21 / 22

Rewarding exploration

Life is too short for timid, cost-driven search

Shifting perspectives:

I costly arc rewarding move

I minimize costs maximize reward
for reward = −cost,

min cost ≈ max reward

I let goal affect arc reward (goal-directed search),
mixing destination (goal) with journey (arc)

I frontier search from start back up from goal
from branching factor b = 2 to future discount b = 1

2
approximate reward

H = lim
n→∞

Hn

by looking n steps ahead Hn

— learning by incrementing n

22 / 22

