Nodes from a goal set

$$
G_{n} \approx\{\text { nodes with distance } n \text { from } G\}
$$

Nodes from a goal set

Nodes from a goal set

Nodes from a goal set

Distance d_{G} to minimize

$$
d_{G}(s):= \begin{cases}n & \text { if } s \in G_{n} \\ \infty & \text { otherwise }\end{cases}
$$

Refine

$$
\delta_{G}(s):= \begin{cases}1 & \text { if } s \in G \\ 0 & \text { otherwise }\end{cases}
$$

to reward from 1 to $0(\approx$ distance from 0 to ∞)

Distance d_{G} to minimize \rightsquigarrow reward r_{G} to maximize

$$
d_{G}(s):= \begin{cases}n & \text { if } s \in G_{n} \\ \infty & \text { otherwise }\end{cases}
$$

Refine

$$
\delta_{G}(s):= \begin{cases}1 & \text { if } s \in G \\ 0 & \text { otherwise }\end{cases}
$$

to reward from 1 to $0(\approx$ distance from 0 to ∞)

$$
r_{G}(s):= \begin{cases}2^{-n} & \text { if } s \in G_{n} \\ 0 & \text { otherwise }\end{cases}
$$

halving the reward as we step back (starting at G)

Distance d_{G} to minimize \rightsquigarrow reward r_{G} to maximize

$$
d_{G}(s):=\left\{\begin{array}{cc}
n & \text { if } s \in G_{n} \\
\infty & \text { otherwise }
\end{array}\right.
$$

Refine

$$
\delta_{G}(s):= \begin{cases}1 & \text { if } s \in G \\ 0 & \text { otherwise }\end{cases}
$$

to reward from 1 to $0(\approx$ distance from 0 to ∞)

$$
r_{G}(s):= \begin{cases}2^{-n} & \text { if } s \in G_{n} \\ 0 & \text { otherwise }\end{cases}
$$

halving the reward as we step back (starting at G)

$$
r_{G}(s)=\frac{1}{2} r_{G}\left(s^{\prime}\right) \text { if } \operatorname{arc}\left(s, s^{\prime}\right) \text { and } d_{G}\left(s^{\prime}\right)<d_{G}(s) \text {. }
$$

Rewards looking ahead

$$
\begin{aligned}
H_{0}(s) & :=\delta_{G}(s) \\
H_{n+1}(s) & :=\delta_{G}(s)+\frac{1}{2} \max \left\{H_{n}\left(s^{\prime}\right) \mid \operatorname{arc}_{=}\left(s, s^{\prime}\right)\right\}
\end{aligned}
$$

where $\operatorname{arc}=$ encodes move/rest

$$
\operatorname{arc}_{=}\left(s, s^{\prime}\right) \Longleftrightarrow \operatorname{arc}\left(s, s^{\prime}\right) \text { or } s=s^{\prime}
$$

Rewards looking ahead

$$
\begin{aligned}
H_{0}(s) & :=\delta_{G}(s) \\
H_{n+1}(s) & :=\delta_{G}(s)+\frac{1}{2} \max \left\{H_{n}\left(s^{\prime}\right) \mid \operatorname{arc}=\left(s, s^{\prime}\right)\right\}
\end{aligned}
$$

where $\operatorname{arc}=$ encodes move/rest

$$
\operatorname{arc}_{=}\left(s, s^{\prime}\right) \Longleftrightarrow \operatorname{arc}\left(s, s^{\prime}\right) \text { or } s=s^{\prime}
$$

For $s \in G_{0}$,

$$
H_{n+1}(s)=1+\frac{1}{2} H_{n}(s)=a_{n+1}
$$

where

$$
a_{n}:=\sum_{k=0}^{n} 2^{-k}=2\left(1-2^{-(n+1)}\right)
$$

Rewards looking ahead

$$
\begin{aligned}
H_{0}(s) & :=\delta_{G}(s) \\
H_{n+1}(s) & :=\delta_{G}(s)+\frac{1}{2} \max \left\{H_{n}\left(s^{\prime}\right) \mid \operatorname{arc}=\left(s, s^{\prime}\right)\right\}
\end{aligned}
$$

where arc $=$ encodes move/rest

$$
\operatorname{arc}_{=}\left(s, s^{\prime}\right) \Longleftrightarrow \operatorname{arc}\left(s, s^{\prime}\right) \text { or } s=s^{\prime}
$$

For $s \in G_{0}$,

$$
H_{n+1}(s)=1+\frac{1}{2} H_{n}(s)=a_{n+1}
$$

where

$$
a_{n}:=\sum_{k=0}^{n} 2^{-k}=2\left(1-2^{-(n+1)}\right)
$$

and for $s \in G_{k+1}, s^{\prime} \in G_{k}$ and $\operatorname{arc}\left(s, s^{\prime}\right)$,

$$
H_{k+n+1}(s)=\frac{1}{2} H_{k+n}\left(s^{\prime}\right)
$$

Rewards looking ahead: $\lim _{n \rightarrow \infty} H_{n}(s)=2 r_{G}(s)$

$$
\begin{aligned}
H_{0}(s) & :=\delta_{G}(s) \\
H_{n+1}(s) & :=\delta_{G}(s)+\frac{1}{2} \max \left\{H_{n}\left(s^{\prime}\right) \mid \operatorname{arc}_{=}\left(s, s^{\prime}\right)\right\}
\end{aligned}
$$

where arc $=$ encodes move/rest

$$
\operatorname{arc}_{=}\left(s, s^{\prime}\right) \Longleftrightarrow \operatorname{arc}\left(s, s^{\prime}\right) \text { or } s=s^{\prime}
$$

For $s \in G_{0}$,

$$
H_{n+1}(s)=1+\frac{1}{2} H_{n}(s)=a_{n+1}
$$

where

$$
a_{n}:=\sum_{k=0}^{n} 2^{-k}=2\left(1-2^{-(n+1)}\right)
$$

and for $s \in G_{k+1}, s^{\prime} \in G_{k}$ and $\operatorname{arc}\left(s, s^{\prime}\right)$,

$$
H_{k+n+1}(s)=\frac{1}{2} H_{k+n}\left(s^{\prime}\right)
$$

$H=\lim _{n \rightarrow \infty} H_{n}$

$$
H(s)=\delta_{G}(s)+\frac{1}{2} \max \left\{H\left(s^{\prime}\right) \mid \operatorname{arc}=\left(s, s^{\prime}\right)\right\}
$$

a foolproof heuristic for the shortest solution

$$
\text { Frontier }=[\mathrm{Hd} \mid \mathrm{Tl}] \text { with } H(\mathrm{Hd}) \geq H(s) \text { for all } s \text { in } \mathrm{Tl} .
$$

$H=\lim _{n \rightarrow \infty} H_{n}$

$$
H(s)=\delta_{G}(s)+\frac{1}{2} \max \left\{H\left(s^{\prime}\right) \mid \operatorname{arc}_{=}\left(s, s^{\prime}\right)\right\}
$$

a foolproof heuristic for the shortest solution

$$
\text { Frontier }=[H d \mid T 1] \text { with } H(H d) \geq H(s) \text { for all } s \text { in } \mathrm{Tl} .
$$

What if arcs have different costs?

$H=\lim _{n \rightarrow \infty} H_{n}$ and evaluating moves

$$
H(s)=\delta_{G}(s)+\frac{1}{2} \max \left\{H\left(s^{\prime}\right) \mid \operatorname{arc}_{=}\left(s, s^{\prime}\right)\right\}
$$

a foolproof heuristic for the shortest solution

$$
\text { Frontier }=[\mathrm{Hd} \mid \mathrm{Tl}] \text { with } H(\mathrm{Hd}) \geq H(s) \text { for all } s \text { in } \mathrm{Tl} .
$$

What if arcs have different costs?
Extend $\delta_{G}(s)$ to arc/rest s, s^{\prime}

$$
Q_{0}\left(s, s^{\prime}\right):= \begin{cases}1 & \text { if } s=s^{\prime} \in G \\ -\operatorname{cost}\left(s, s^{\prime}\right) & \text { else if } \operatorname{arc}\left(s, s^{\prime}\right) \\ -\max _{s_{1}, s_{2}} \operatorname{cost}\left(s_{1}, s_{2}\right) & \text { otherwise }\end{cases}
$$

and $H_{n+1}(s)$ to

$$
Q_{n+1}\left(s, s^{\prime}\right):=Q_{0}\left(s, s^{\prime}\right)+\frac{1}{2} \max \left\{Q_{n}\left(s^{\prime}, s^{\prime \prime}\right) \mid \operatorname{arc}_{=}\left(s^{\prime}, s^{\prime \prime}\right)\right\}
$$

Discounted rewards $(0 \leq \gamma<1)$

(immediate) rewards $r_{1}, r_{2}, r_{3}, \ldots$ at times $1,2,3, \ldots$ give a γ-discounted value of

$$
V:=r_{1}+\gamma r_{2}+\gamma^{2} r_{3}+\cdots=\sum_{i \geq 1} \gamma^{i-1} r_{i}
$$

Discounted rewards $(0 \leq \gamma<1)$

(immediate) rewards $r_{1}, r_{2}, r_{3}, \ldots$ at times $1,2,3, \ldots$ give a γ-discounted value of

$$
\begin{aligned}
V & :=r_{1}+\gamma r_{2}+\gamma^{2} r_{3}+\cdots=\sum_{i \geq 1} \gamma^{i-1} r_{i} \\
& =\left(\sum_{i=1}^{t} \gamma^{i-1} r_{i}\right)+\gamma^{t} V_{t+1}
\end{aligned}
$$

where V_{t} is the value from time step t on $\left(V_{1}=V\right)$

$$
V_{t}:=\sum_{i \geq t} \gamma^{i-t} r_{i}=r_{t}+\gamma V_{t+1}
$$

Discounted rewards $(0 \leq \gamma<1)$

(immediate) rewards $r_{1}, r_{2}, r_{3}, \ldots$ at times $1,2,3, \ldots$ give a γ-discounted value of

$$
\begin{aligned}
V & :=r_{1}+\gamma r_{2}+\gamma^{2} r_{3}+\cdots=\sum_{i \geq 1} \gamma^{i-1} r_{i} \\
& =\left(\sum_{i=1}^{t} \gamma^{i-1} r_{i}\right)+\gamma^{t} V_{t+1}
\end{aligned}
$$

where V_{t} is the value from time step t on $\left(V_{1}=V\right)$

$$
V_{t}:=\sum_{i \geq t} \gamma^{i-t} r_{i}=r_{t}+\gamma V_{t+1}
$$

which is bound by bounds on r_{i}

$$
m \leq r_{i} \leq M \text { for each } i \geq t \quad \text { implies } \quad \frac{m}{1-\gamma} \leq V_{t} \leq \frac{M}{1-\gamma}
$$

since $\sum_{i \geq 0} \gamma^{i}=(1-\gamma)^{-1}$

Discounted rewards $(0 \leq \gamma<1)$

(immediate) rewards $r_{1}, r_{2}, r_{3}, \ldots$ at times $1,2,3, \ldots$ give a γ-discounted value of

$$
\begin{aligned}
V & :=r_{1}+\gamma r_{2}+\gamma^{2} r_{3}+\cdots=\sum_{i \geq 1} \gamma^{i-1} r_{i} \\
& =\left(\sum_{i=1}^{t} \gamma^{i-1} r_{i}\right)+\gamma^{t} V_{t+1}
\end{aligned}
$$

where V_{t} is the value from time step t on $\left(V_{1}=V\right)$

$$
V_{t}:=\sum_{i \geq t} \gamma^{i-t} r_{i}=r_{t}+\gamma V_{t+1} \quad \text { (backward induction) }
$$

which is bound by bounds on r_{i}

$$
m \leq r_{i} \leq M \text { for each } i \geq t \quad \text { implies } \quad \frac{m}{1-\gamma} \leq V_{t} \leq \frac{M}{1-\gamma}
$$

since $\sum_{i \geq 0} \gamma^{i}=(1-\gamma)^{-1}$

$Q=\lim _{n \rightarrow \infty} Q_{n}$

$$
\begin{aligned}
Q\left(s, s^{\prime}\right) & :=Q_{0}\left(s, s^{\prime}\right)+\frac{1}{2} \max \left\{Q\left(s^{\prime}, s^{\prime \prime}\right) \mid \operatorname{arc}=\left(s^{\prime}, s^{\prime \prime}\right)\right\} \\
Q_{0}\left(s, s^{\prime}\right) & := \begin{cases}1 & \text { if } s=s^{\prime} \in G \\
-\operatorname{cost}\left(s, s^{\prime}\right) & \text { else if } \operatorname{arc}\left(s, s^{\prime}\right)\end{cases}
\end{aligned}
$$

soln not chosen

$$
Q(\mathrm{~s}, \mathrm{~g})=-3
$$

$$
Q(\mathrm{~s}, \mathrm{a})=-2=Q(\mathrm{a}, \mathrm{~b})=Q(\mathrm{~b}, \mathrm{~s})
$$

$Q=\lim _{n \rightarrow \infty} Q_{n}$

$$
\begin{aligned}
Q\left(s, s^{\prime}\right) & :=Q_{0}\left(s, s^{\prime}\right)+\frac{1}{2} \max \left\{Q\left(s^{\prime}, s^{\prime \prime}\right) \mid \operatorname{arc}=\left(s^{\prime}, s^{\prime \prime}\right)\right\} \\
Q_{0}\left(s, s^{\prime}\right) & := \begin{cases}1 & \text { if } s=s^{\prime} \in G \\
-\operatorname{cost}\left(s, s^{\prime}\right) & \text { else if } \operatorname{arc}\left(s, s^{\prime}\right)\end{cases}
\end{aligned}
$$

soln not chosen

$$
Q(\mathrm{~s}, \mathrm{~g})=-3
$$

$$
Q(\mathrm{~s}, \mathrm{a})=-2=Q(\mathrm{a}, \mathrm{~b})=Q(\mathrm{~b}, \mathrm{~s})
$$

costlier soln chosen

$$
Q(\mathrm{~s}, \mathrm{~g})=-5
$$

$$
Q(\mathrm{a}, \mathrm{~g})=-4=Q(\mathrm{~s}, \mathrm{a})
$$

Raising the reward

Adjust $Q_{0}\left(s, s^{\prime}\right)$ to

$$
R\left(s, s^{\prime}\right):= \begin{cases}r & \text { if } s=s^{\prime} \in G \\ -\operatorname{cost}\left(s, s^{\prime}\right) & \text { else if } \operatorname{arc}\left(s, s^{\prime}\right)\end{cases}
$$

for some reward r high enough to offset costs of reaching a goal

Raising the reward

Adjust $Q_{0}\left(s, s^{\prime}\right)$ to

$$
R\left(s, s^{\prime}\right):= \begin{cases}r & \text { if } s=s^{\prime} \in G \\ -\operatorname{cost}\left(s, s^{\prime}\right) & \text { else if } \operatorname{arc}\left(s, s^{\prime}\right)\end{cases}
$$

for some reward r high enough to offset costs of reaching a goal

$$
\text { e.g. } r \geq 2^{n} n c
$$

for solutions up to $n-1$ arcs with arcs costing $\leq c$ e.g. n states, and c is max arc cost.

Raising the reward

Adjust $Q_{0}\left(s, s^{\prime}\right)$ to

$$
R\left(s, s^{\prime}\right):= \begin{cases}r & \text { if } s=s^{\prime} \in G \\ -\operatorname{cost}\left(s, s^{\prime}\right) & \text { else if } \operatorname{arc}\left(s, s^{\prime}\right)\end{cases}
$$

for some reward r high enough to offset costs of reaching a goal

$$
\text { e.g. } r \geq 2^{n} n c
$$

for solutions up to $n-1$ arcs with arcs costing $\leq c$ e.g. n states, and c is max arc cost.

Let

$$
V(s):=\max \left\{Q\left(s, s^{\prime}\right) \mid \operatorname{arc}=\left(s, s^{\prime}\right)\right\}
$$

so for $0 \leq i<n, s^{\prime} \in G_{i}$ and $\operatorname{arc}\left(s, s^{\prime}\right)$,

$$
\begin{aligned}
& V\left(s^{\prime}\right) \geq 2^{n-i}(n-i) c \\
& V(s) \geq-c+\frac{1}{2} V\left(s^{\prime}\right) \geq 2^{n-(i+1)}(n-(i+1)) c \geq 2 c
\end{aligned}
$$

Recap

From node s, find path to goal via s^{\prime} maximizing

$$
Q\left(s, s^{\prime}\right):=R\left(s, s^{\prime}\right)+\frac{1}{2} V\left(s^{\prime}\right)
$$

with discount $\frac{1}{2}$ on future $V\left(s^{\prime}\right)$, contra

$$
\begin{aligned}
\operatorname{cost}\left(s_{1} \cdots s_{k}\right) & =\sum_{i=1}^{k-1} \operatorname{cost}\left(s_{i}, s_{i+1}\right) \\
& \neq \sum_{i=1}^{k-1} 2^{1-i} \operatorname{cost}\left(s_{i}, s_{i+1}\right)
\end{aligned}
$$

Recap

From node s, find path to goal via s^{\prime} maximizing

$$
Q\left(s, s^{\prime}\right):=R\left(s, s^{\prime}\right)+\frac{1}{2} V\left(s^{\prime}\right)
$$

with discount $\frac{1}{2}$ on future $V\left(s^{\prime}\right)$, contra

$$
\begin{aligned}
\operatorname{cost}\left(s_{1} \cdots s_{k}\right) & =\sum_{i=1}^{k-1} \operatorname{cost}\left(s_{i}, s_{i+1}\right) \\
& \neq \sum_{i=1}^{k-1} 2^{1-i} \operatorname{cost}\left(s_{i}, s_{i+1}\right)
\end{aligned}
$$

Trade min cost guarantee for cost-benefit analysis with chance $\frac{1}{2}$ of survival/doom.

Recap

From node s, find path to goal via s^{\prime} maximizing

$$
Q\left(s, s^{\prime}\right):=R\left(s, s^{\prime}\right)+\frac{1}{2} V\left(s^{\prime}\right)
$$

with discount $\frac{1}{2}$ on future $V\left(s^{\prime}\right)$, contra

$$
\begin{aligned}
\operatorname{cost}\left(s_{1} \cdots s_{k}\right) & =\sum_{i=1}^{k-1} \operatorname{cost}\left(s_{i}, s_{i+1}\right) \\
& \neq \sum_{i=1}^{k-1} 2^{1-i} \operatorname{cost}\left(s_{i}, s_{i+1}\right)
\end{aligned}
$$

Trade min cost guarantee for cost-benefit analysis with chance $\frac{1}{2}$ of survival/doom.

Next: more uncertainty, approached via approximations like

$$
\begin{aligned}
Q_{n}\left(s, s^{\prime}\right) & \approx Q\left(s, s^{\prime}\right) \text { up to look ahead } n \\
Q\left(s, s^{\prime}\right) & =\lim _{n \rightarrow \infty} Q_{n}\left(s, s^{\prime}\right) .
\end{aligned}
$$

