An idea that changed web search: Google Page Rank

 Value of webpage $P_{i}=$ probability a web surfer is at P_{i} clicking links- initially random
- move to P_{j} from P_{i} along link $P_{i} \rightarrow P_{j}$ probabilistically

An idea that changed web search: Google Page Rank
Value of webpage $P_{i}=$ probability a web surfer is at P_{i} clicking links

- initially random
- move to P_{j} from P_{i} along link $P_{i} \rightarrow P_{j}$ probabilistically

1	Iteration 0	Iteration 1	Iteration 2	Final Rank	
4	P_{1}	$1 / 5$	$1 / 20$	$1 / 40$	5
P_{2}	$1 / 5$	$5 / 20$	$3 / 40$	4	
P_{3}	$1 / 5$	$1 / 10$	$5 / 40$	3	
P_{4}	$1 / 5$	$5 / 20$	$15 / 40$	2	
P_{5}	$1 / 5$	$7 / 20$	$16 / 40$	1	

$\operatorname{PR}\left(P_{5}\right)=1 / 5+1 / 5 * 1 / 4+1 / 5 * 1 / 2=7 / 20$
From cs.brown.edu

From Interactive Linear Algebra, Margalit \& Rabinoff

From Interactive Linear Algebra, Margalit \& Rabinoff

$$
\left(\begin{array}{llll}
0 & 0 & 1 & \frac{1}{2} \\
\frac{1}{3} & 0 & 0 & 0 \\
\frac{1}{3} & \frac{1}{2} & 0 & \frac{1}{2} \\
\frac{1}{3} & \frac{1}{2} & 0 & 0
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right)=\left(\begin{array}{ll}
& c+\frac{1}{2} d \\
\frac{1}{3} a & \\
\frac{1}{3} a+\frac{1}{2} b & +\frac{1}{2} d \\
\frac{1}{3} a+\frac{1}{2} b &
\end{array}\right)=\left(\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right)
$$

From Interactive Linear Algebra, Margalit \& Rabinoff

$$
\left(\begin{array}{cccc}
0 & 0 & 1 & \frac{1}{2} \\
\frac{1}{3} & 0 & 0 & 0 \\
\frac{1}{3} & \frac{1}{2} & 0 & \frac{1}{2} \\
\frac{1}{3} & \frac{1}{2} & 0 & 0
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right)=\left(\begin{array}{ll}
& c+\frac{1}{2} d \\
\frac{1}{3} a & \\
\frac{1}{3} a+\frac{1}{2} b & +\frac{1}{2} d \\
\frac{1}{3} a+\frac{1}{2} b &
\end{array}\right)=\left(\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right) .
$$

$$
A \mathbf{x}=\mathbf{x}
$$

is an eigenvalue-eigenvector problem that we can solve iteratively

$$
\mathbf{x}=\lim _{n \rightarrow \infty} A^{n} \mathbf{x}_{\circ}
$$

from uniform distribution \mathbf{x}_{\circ} by repeated A-transitions

$$
A^{1}:=A \quad A^{n+1}:=A^{n} A \quad \text { (matrix multiplication) }
$$

under certain assumptions about A.

Back to slide 2

Back to slide 2

Back to slide 2 (codabrainy.com/en/python-compiler/)

```
C
O https://www.codabrainy.com/en/python-compiler/
```


Adjustments for random exploration

with probability p , our surfer will surf to a completely random page; otherwise, he'll click a random link on the current page, unless the current page has no links, in which case he'll surf to a completely random page in either case.

Adjustments for random exploration

with probability p , our surfer will surf to a completely random page; otherwise, he'll click a random link on the current page, unless the current page has no links, in which case he'll surf to a completely random page in either case.

$$
A=\left(\begin{array}{cccc}
0 & 0 & 0 & \frac{1}{2} \\
\frac{1}{3} & 0 & 0 & 0 \\
\frac{1}{3} & \frac{1}{2} & 0 & \frac{1}{2} \\
\frac{1}{3} & \frac{1}{2} & 0 & 0
\end{array}\right) \xrightarrow{\text { modify }} \quad A^{\prime}=\left(\begin{array}{cccc}
0 & 0 & \frac{1}{4} & \frac{1}{2} \\
\frac{1}{3} & 0 & \frac{1}{4} & 0 \\
\frac{1}{3} & \frac{1}{2} & \frac{1}{4} & \frac{1}{2} \\
\frac{1}{3} & \frac{1}{2} & \frac{1}{4} & 0
\end{array}\right)
$$

Choosing the damping factor $p=0.15$, the Google Matrix is

$$
\begin{aligned}
M=0.85 & \cdot\left(\begin{array}{cccc}
0 & 0 & \frac{1}{4} & \frac{1}{2} \\
\frac{1}{3} & 0 & \frac{1}{4} & 0 \\
\frac{1}{3} & \frac{1}{2} & \frac{1}{4} & \frac{1}{2} \\
\frac{1}{3} & \frac{1}{2} & \frac{1}{4} & 0
\end{array}\right)+0.15 \cdot\left(\begin{array}{cccc}
1 / 4 & 1 / 4 & 1 / 4 & 1 / 4 \\
1 / 4 & 1 / 4 & 1 / 4 & 1 / 4 \\
1 / 4 & 1 / 4 & 1 / 4 & 1 / 4 \\
1 / 4 & 1 / 4 & 1 / 4 & 1 / 4
\end{array}\right) \\
& \approx\left(\begin{array}{lllll}
0.0375 & 0.0375 & 0.2500 & 0.4625 \\
0.3208 & 0.0375 & 0.2500 & 0.0375 \\
0.3208 & 0.4625 & 0.2500 & 0.4625 \\
0.3208 & 0.4625 & 0.2500 & 0.0375
\end{array}\right)
\end{aligned}
$$

