Horn clauses and negations

An integrity constraint is a clause of the form

\[\text{false} :\!-\! a_1, \ldots, a_k \]

where each \(a_i \) is an atom and false is a special atom that is false in all interpretations.
Horn clauses and negations

An **integrity constraint** is a clause of the form

\[\text{false} :- a_1, \ldots, a_k \]

where each \(a_i \) is an atom and \(\text{false} \) is a special atom that is false in all interpretations.

A **Horn clause** is either a definite clause or an integrity constraint.
Horn clauses and negations

An integrity constraint is a clause of the form

\[\text{false} :- a_1,\ldots,a_k \]

where each \(a_i \) is an atom and false is a special atom that is false in all interpretations.

A Horn clause is either a definite clause or an integrity constraint.

The negation of a formula \(\alpha \), written \(\neg \alpha \), is a formula that is true in an interpretation \(I \) iff \(\alpha \) is false in \(I \).
Horn clauses and negations

An integrity constraint is a clause of the form

$$\text{false} :\neg a_1, \ldots, a_k$$

where each a_i is an atom and false is a special atom that is false in all interpretations.

A Horn clause is either a definite clause or an integrity constraint.

The negation of a formula α, written $\neg \alpha$, is a formula that is true in an interpretation I iff α is false in I.

Example

$$KB = \begin{cases} & \text{false} :\neg a, b. \\ & a :\neg c. \\ & b :\neg c. \end{cases}$$

$$KB \models \neg c$$
Disjunctions

Every set of definite clauses is satisfiable.
Not so with Horn clauses

\[KB \models \varphi \iff KB, \lnot \varphi \text{ is not satisfiable} \]
Disjunctions

Every set of definite clauses is satisfiable.
Not so with Horn clauses

\[KB \models \varphi \iff KB, \neg \varphi \text{ is not satisfiable} \iff KB, \neg \varphi \models \text{false}. \]
Disjunctions

Every set of definite clauses is satisfiable.
Not so with Horn clauses

\[KB \models \varphi \iff KB, \neg \varphi \text{ is not satisfiable} \]
\[\iff KB, \neg \varphi \models \text{false.} \]

The **disjunction** \(\alpha \lor \beta \) of \(\alpha \) and \(\beta \) is a formula that is true in an interpretation \(I \) iff at least one of \(\alpha \) or \(\beta \) is true in \(I \).

Example

\[KB = \begin{cases}
\text{false} & : - \ a, b. \\
\hspace{1cm} a & : - \ c. \\
\hspace{1cm} b & : - \ d.
\end{cases} \]

\[KB \models \neg c \lor \neg d \]
Disjunctions

Every set of definite clauses is satisfiable.
Not so with Horn clauses

\[KB \models \varphi \iff KB, \neg \varphi \text{ is not satisfiable} \]
\[\iff KB, \neg \varphi \models \text{false.} \]

The disjunction \(\alpha \lor \beta \) of \(\alpha \) and \(\beta \) is a formula that is true in an interpretation \(I \) iff at least one of \(\alpha \) or \(\beta \) is true in \(I \).

Example

\[KB = \begin{cases}
\text{false} :- a, b. \\
a :- c. \\
b :- d.
\end{cases} \]

\[KB \models \neg c \lor \neg d \]

Horn-SAT is feasible, whereas 3-SAT is likely not.
Non-monotonicity

Logical consequence is **monotonic**: adding clauses doesn’t invalidate a previous conclusion

\[KB \models \varphi \text{ implies } KB, \psi \models \varphi. \]

Negation-as-failure leads to non-monotonicity: a conclusion can be invalidated by adding more clauses.

```
empty-course(X) :- course(X), \+
    enrolled(_,X).
```

Sometimes assume that a database of facts is complete. Any fact not listed is false.

Example: Assume a database of video segments is complete.
Non-monotonicity

Logical consequence is **monotonic**: adding clauses doesn’t invalidate a previous conclusion

\[KB \models \varphi \text{ implies } KB, \psi \models \varphi. \]

Negation-as-failure leads to **non-monotonicity**: a conclusion can be invalidated by adding more clauses.

\[
\text{empty-course}(X) :- \text{course}(X), \\
\quad \backslash +\text{enrolled}(_,X).
\]

Sometimes assume that a database of facts is complete. Any fact not listed is false.
Non-monotonicity

Logical consequence is monotonic: adding clauses doesn’t invalidate a previous conclusion

\[KB \models \varphi \text{ implies } KB, \psi \models \varphi. \]

Negation-as-failure leads to non-monotonicity: a conclusion can be invalidated by adding more clauses.

empty-course(X) :- course(X), \+enrolled(_,X).

Sometimes assume that a database of facts is complete. Any fact not listed is false.

Example: Assume a database of video segments is complete.
Rules

Encode *birds fly*

\[
\text{fly}(X) :- \text{bird}(X).
\]

to allow for exceptions.
Rules and defaults

Encode *birds fly*

\[\text{fly}(X) :- \text{bird}(X). \]

\[\% \quad \frac{\text{bird}(X)}{\text{fly}(X)} \]

to allow for exceptions.

Default rule (R. Reiter)

\[\frac{\text{bird}(X) : \text{fly}(X)}{\text{fly}(X)} \]
Rules and defaults

Encode *birds fly*

\[
\text{fly}(X) :- \text{bird}(X). \quad \text{% } \frac{\text{bird}(X)}{\text{fly}(X)}
\]

to allow for exceptions.

Default rule (R. Reiter)

\[
\text{bird}(X) : \text{fly}(X) \quad \frac{\text{fly}(X)}{\text{fly}(X)}
\]

In general,

\[
\begin{array}{c}
\text{prerequisite } p : \text{justification } j \\
\text{conclusion } c
\end{array}
\]

applied to \(KB \) says:

\[
\begin{array}{c}
\text{conclude } c \text{ if } KB \models p \text{ and } j \text{ is } KB\text{-consistent} \\\
KB, j \not\models \text{false}
\end{array}
\]
Rules and defaults

Encode *birds fly*

\[
\text{fly}(X) :- \text{bird}(X).
\]

\[
\text{bird}(X) \vdash \text{fly}(X)
\]

% \[
\frac{\text{bird}(X)}{\text{fly}(X)}
\]

to allow for exceptions.

Default rule (R. Reiter)

\[
\frac{\text{bird}(X) : \text{fly}(X)}{\text{fly}(X)}
\]

In general,

\[
\text{prerequisite } p : \text{justification } j
\]

\[
\text{conclusion } c
\]

applied to KB says:

conclude c if $KB \models p$ and j is KB-consistent

\[
KB, j \not\models false
\]

j is true in some model of KB
Birds and bees

Let KB be

\begin{align*}
\text{bird(robin).} \\
\text{bird(penguin).} \\
\text{false :- fly(penguin).} \\
\text{fly(bee).}
\end{align*}

Conclude:
Birds and bees

\[(\star) \quad \frac{\text{bird}(X) : \text{fly}(X)}{\text{fly}(X)}\]

Let \(KB\) be

\[
\begin{align*}
\text{bird}(robin). \\
\text{bird}(penguin). \\
\text{false} & : - \text{fly}(penguin). \\
\text{fly}(bee).
\end{align*}
\]

Conclude:
\[
\text{fly}(robin) \quad \text{by default rule (\star)}
\]

but not \(\text{fly}(penguin)\).
Birds and bees

Let KB be

\[
\begin{align*}
\text{bird(robin)}. \\
\text{bird(penguin)}. \\
\text{false :- fly(penguin)}. \\
\text{fly(bee)}.
\end{align*}
\]

Conclude:

\[
\begin{align*}
\text{fly(robin)} & \quad \text{by default rule (⋆)} \\
\text{but not fly(penguin)}. \\
\text{An explanation of fly(bee) using (⋆) is} \\
\text{bird(bee)}
\end{align*}
\]
Birds and bees

\[(\star) \frac{\text{bird}(X): \text{fly}(X)}{\text{fly}(X)}\]

Let \(KB\) be

\[
\begin{align*}
\text{bird}(\text{robin}). \\
\text{bird}(\text{penguin}). \\
\text{false} & : \text{fly}(\text{penguin}). \\
\text{fly}(\text{bee}).
\end{align*}
\]

Conclude:

\[\text{fly}(\text{robin}) \quad \text{by default rule} \ (\star)\]

but \(\text{not fly}(\text{penguin})\).

An explanation of \(\text{fly}(\text{bee})\) using \((\star)\) is

\[\text{bird}(\text{bee})\]

which we can block by adding to \(KB\) the rule

\[\text{false} : \text{bird}(\text{bee}).\]
Non-determinism

Conflicting defaults

\[
\text{quaker}(X) : \text{pacifist}(X) \quad \text{republican}(X) : \text{hawk}(X)
\]

\[
\text{pacifist}(X) \quad \text{hawk}(X)
\]
Non-determinism

Conflicting defaults

\[
\begin{align*}
\text{quaker}(X) : \text{pacifist}(X) & \quad \text{republican}(X) : \text{hawk}(X) \\
\text{pacifist}(X) & \quad \text{hawk}(X)
\end{align*}
\]

Let \(KB \) be

\[
\begin{align*}
\text{quaker}(\text{nixon}). \\
\text{republican}(\text{nixon}). \\
\text{false} :- \text{pacifist}(X), \text{hawk}(X).
\end{align*}
\]
Non-determinism

Conflicting defaults

\[
\begin{align*}
\text{quaker}(X) : \text{pacifist}(X) & \quad \text{republican}(X) : \text{hawk}(X) \\
\text{pacifist}(X) & \quad \text{hawk}(X)
\end{align*}
\]

Let \(KB \) be

\[
\begin{align*}
\text{quaker}(\text{nixon}). \\
\text{republican}(\text{nixon}). \\
\text{false} :- \text{pacifist}(X), \text{hawk}(X).
\end{align*}
\]

Applying one default to Nixon makes the other inapplicable.

\(KB \) has two incompatible extensions, breaking

least fixed point (provability model) for Horn clauses.
Normal default rules and inferring negations

A default rule is *normal* if its justification is its conclusion

\[
\frac{p : c}{c}
\]

— infer \(c\) if it is consistent and \(p\) is provable
Normal default rules and inferring negations

A default rule is *normal* if its justification is its conclusion
\[
\frac{p : c}{c}
\]

\[\text{— infer } c \text{ if it is consistent and } p \text{ is provable}\]

Closed World Assumption: any unprovable atom \(\varphi \) is false

\[
\text{true} : \neg \varphi \quad \frac{\neg \varphi}{\neg \varphi}
\]

\[
naf(P) :- (P,!,fail); true.\]

N.B. Checking finite failure can be as hard as the Halting Problem.
Normal default rules and inferring negations

A default rule is *normal* if its justification is its conclusion: \[p : c \]

\[\quad \Rightarrow \quad \text{infer } c \text{ if it is consistent and } p \text{ is provable} \]

Closed World Assumption: any unprovable atom \(\varphi \) is false

\[\text{true} : \neg \varphi \]

\[\quad \rightarrow \quad \neg \varphi \]

Negation as failure: \(\varphi \) is false if attempting to prove \(\varphi \) fails finitely

\[\text{naf}(P) :- (P,!,,fail); \text{true}. \]
Normal default rules and inferring negations

A default rule is *normal* if its justification is its conclusion

\[
\frac{p}{c}
\]

— infer \(c \) if it is consistent and \(p \) is provable

Closed World Assumption: any unprovable atom \(\varphi \) is false

\[
\text{true} : \neg \varphi
\]

\[
\neg \varphi
\]

Negation as failure: \(\varphi \) is false if attempting to prove \(\varphi \) fails finitely

\[
\text{naf}(P) : - (P,!,\text{fail}); \text{true}.
\]

N.B. Checking finite failure can be as hard as the Halting Problem.
3 modes of inference (C.S. Peirce)

<table>
<thead>
<tr>
<th>Deduction</th>
<th>deduce</th>
<th>modus ponens \equiv function app $f(a)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abduction</td>
<td>explain</td>
<td>choose input a from assumables</td>
</tr>
<tr>
<td>Induction</td>
<td>generalise/program</td>
<td>choose rule/function f</td>
</tr>
</tbody>
</table>
3 modes of inference (C.S. Peirce)

<table>
<thead>
<tr>
<th>Deduction</th>
<th>deduce</th>
<th>modus ponens \cong function app $f(a)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abduction</td>
<td>explain</td>
<td>choose input a from assumables</td>
</tr>
<tr>
<td>Induction</td>
<td>generalise/program</td>
<td>choose rule/function f</td>
</tr>
</tbody>
</table>

From \models as inclusion \subseteq

$$KB \models g \iff \text{Mod}(KB) \subseteq \text{Mod}(g)$$

KB satisfiable $\iff \text{Mod}(KB) \not\subseteq \text{Mod}(\text{false})$

$\iff \text{Mod}(KB) \neq \emptyset$

To weighing alternatives $d \in D$ via probabilities given KB

$$\text{prob}(d|KB) = \text{conditional probability of } d \text{ given } KB$$

\leadsto Bayesian networks ...