Exercise or relax, for $\gamma = 0.9$

Recall (probability, reward)-matrices for exercise, relax

<table>
<thead>
<tr>
<th></th>
<th>fit</th>
<th>unfit</th>
</tr>
</thead>
<tbody>
<tr>
<td>exercise</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fit</td>
<td>.99, 8</td>
<td>.01, 8</td>
</tr>
<tr>
<td>unfit</td>
<td>.2, 0</td>
<td>.8, 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>fit</th>
<th>unfit</th>
</tr>
</thead>
<tbody>
<tr>
<td>relax</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fit</td>
<td>.7, 10</td>
<td>.3, 10</td>
</tr>
<tr>
<td>unfit</td>
<td>0, 5</td>
<td>1, 5</td>
</tr>
</tbody>
</table>
Exercise or relax, for $\gamma = 0.9$

Recall (probability, reward)-matrices for exercise, relax

<table>
<thead>
<tr>
<th></th>
<th>fit</th>
<th>unfit</th>
</tr>
</thead>
<tbody>
<tr>
<td>exercise</td>
<td>.99, 8</td>
<td>.01, 8</td>
</tr>
<tr>
<td></td>
<td>.2, 0</td>
<td>.8, 0</td>
</tr>
<tr>
<td>relax</td>
<td>.7, 10</td>
<td>.3, 10</td>
</tr>
<tr>
<td></td>
<td>0, 5</td>
<td>1, 5</td>
</tr>
</tbody>
</table>

$q_0(s, a) := p(s, a, \text{fit})r(s, a, \text{fit}) + p(s, a, \text{unfit})r(s, a, \text{unfit})$

$V_n(s) := \max(q_n(s, \text{exercise}), q_n(s, \text{relax}))$

$q_{n+1}(s, a) := q_0(s, a) + .9(p(s, a, \text{fit})V_n(\text{fit}) + p(s, a, \text{unfit})V_n(\text{unfit}))$
Exercise or relax, for $\gamma = 0.9$

Recall (probability, reward)-matrices for exercise, relax

<table>
<thead>
<tr>
<th></th>
<th>exercise</th>
<th>relax</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>fit</td>
<td>unfit</td>
<td></td>
</tr>
<tr>
<td>fit</td>
<td>.99, 8</td>
<td>.01, 8</td>
<td></td>
</tr>
<tr>
<td>unfit</td>
<td>.2, 0</td>
<td>.8, 0</td>
<td></td>
</tr>
<tr>
<td>fit</td>
<td>.7, 10</td>
<td>.3, 10</td>
<td></td>
</tr>
<tr>
<td>unfit</td>
<td>0, 5</td>
<td>1, 5</td>
<td></td>
</tr>
</tbody>
</table>

$q_0(s, a) := p(s, a, \text{fit})r(s, a, \text{fit}) + p(s, a, \text{unfit})r(s, a, \text{unfit})$

$V_n(s) := \max(q_n(s, \text{exercise}), q_n(s, \text{relax}))$

$q_{n+1}(s, a) := q_0(s, a) + .9(p(s, a, \text{fit})V_n(\text{fit}) + p(s, a, \text{unfit})V_n(\text{unfit}))$

<table>
<thead>
<tr>
<th></th>
<th>exercise</th>
<th>relax</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>fit</td>
<td>8</td>
<td>10</td>
<td>relax</td>
</tr>
<tr>
<td>unfit</td>
<td>0</td>
<td>5</td>
<td>relax</td>
</tr>
</tbody>
</table>
Exercise or relax, for $\gamma = 0.9$

Recall (probability, reward)-matrices for exercise, relax

<table>
<thead>
<tr>
<th></th>
<th>exercise</th>
<th></th>
<th>relax</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>fit</td>
<td>fit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.99, 8</td>
<td>.01, 8</td>
<td>.7, 10</td>
<td>.3, 10</td>
</tr>
<tr>
<td>unfit</td>
<td>.2, 0</td>
<td>.8, 0</td>
<td>0, 5</td>
<td>1, 5</td>
</tr>
</tbody>
</table>

$q_0(s, a) := p(s, a, \text{fit})r(s, a, \text{fit}) + p(s, a, \text{unfit})r(s, a, \text{unfit})$

$V_n(s) := \max(q_n(s, \text{exercise}), q_n(s, \text{relax}))$

$q_{n+1}(s, a) := q_0(s, a) + .9(p(s, a, \text{fit})V_n(\text{fit}) + p(s, a, \text{unfit})V_n(\text{unfit}))$

<table>
<thead>
<tr>
<th></th>
<th>exercise</th>
<th></th>
<th>relax</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>fit</td>
<td>8, 16.955</td>
<td>10, 17.65</td>
<td>relax, relax</td>
<td></td>
</tr>
<tr>
<td>unfit</td>
<td>0, 5.4</td>
<td>5, 9.5</td>
<td>relax, relax</td>
<td></td>
</tr>
</tbody>
</table>
Exercise or relax, for $\gamma = 0.9$

Recall (probability, reward)-matrices for exercise, relax

<table>
<thead>
<tr>
<th></th>
<th>exercise</th>
<th>relax</th>
</tr>
</thead>
<tbody>
<tr>
<td>fit</td>
<td>fit</td>
<td>fit</td>
</tr>
<tr>
<td>unfit</td>
<td>unfit</td>
<td>unfit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>fit</th>
<th>unfit</th>
</tr>
</thead>
<tbody>
<tr>
<td>fit</td>
<td>.99, 8</td>
<td>.01, 8</td>
</tr>
<tr>
<td>unfit</td>
<td>.2, 0</td>
<td>.8, 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>fit</th>
<th>unfit</th>
</tr>
</thead>
<tbody>
<tr>
<td>fit</td>
<td>.7, 10</td>
<td>.3, 10</td>
</tr>
<tr>
<td>unfit</td>
<td>0, 5</td>
<td>1, 5</td>
</tr>
</tbody>
</table>

$q_0(s, a) := p(s, a, \text{fit})r(s, a, \text{fit}) + p(s, a, \text{unfit})r(s, a, \text{unfit})$

$V_n(s) := \max(q_n(s, \text{exercise}), q_n(s, \text{relax}))$

$q_{n+1}(s, a) := q_0(s, a) + .9 \left(p(s, a, \text{fit})V_n(\text{fit}) + p(s, a, \text{unfit})V_n(\text{unfit}) \right)$

<table>
<thead>
<tr>
<th></th>
<th>exercise</th>
<th>relax</th>
</tr>
</thead>
<tbody>
<tr>
<td>fit</td>
<td>8, 16.955, 23.812</td>
<td>10, 17.65, 23.685</td>
</tr>
<tr>
<td>unfit</td>
<td>0, 5.4, 10.017</td>
<td>5, 9.5, 13.55</td>
</tr>
</tbody>
</table>

π relax, relax, exercise
Temporal difference (TD)

A sequence of values

\[v_1, v_2, v_3, \ldots \]

averages at time \(k \) to

\[
A_k := \frac{v_1 + \cdots + v_k}{k}
\]
Temporal difference (TD)

A sequence of values

\[v_1, v_2, v_3, \ldots \]

averages at time \(k \) to

\[A_k := \frac{v_1 + \cdots + v_k}{k} \]

which learning \(v_{k+1} \) updates to

\[A_{k+1} = \frac{v_1 + \cdots + v_k + v_{k+1}}{k + 1} \]

\[= \frac{k}{k+1} A_k + \frac{1}{k+1} v_{k+1} \]
Temporal difference (TD)

A sequence of values

\[v_1, v_2, v_3, \ldots \]

averages at time \(k \) to

\[A_k := \frac{v_1 + \cdots + v_k}{k} \]

which learning \(v_{k+1} \) updates to

\[
A_{k+1} = \frac{v_1 + \cdots + v_k + v_{k+1}}{k + 1} = \frac{k}{k + 1} A_k + \frac{1}{k + 1} v_{k+1}
\]

so if \(\alpha_k = \frac{1}{k} \),

\[
A_{k+1} = (1 - \alpha_{k+1}) A_k + \alpha_{k+1} v_{k+1}
\]

\[
= \underbrace{A_k}_{\text{old}} + \alpha_{k+1}(v_{k+1} - A_k)_{\text{temp diff: new} - \text{old}}
\]
Q-Learning

Assume v_{k+1} is derived from r_{k+1}, s_{k+1}, observed sequentially

$$s_1 \overset{a_1}{\rightarrow} r_2, s_2 \overset{a_2}{\rightarrow} r_3, s_3 \overset{a_3}{\rightarrow} \cdots \quad s_k \overset{a_k}{\rightarrow} r_{k+1}, s_{k+1} \overset{a_{k+1}}{\rightarrow} \cdots$$

experience from which we learn

$$v_{k+1} := r_{k+1} + \gamma \max_a Q_k(s_{k+1}, a)$$
Q-Learning

Assume v_{k+1} is derived from r_{k+1}, s_{k+1}, observed sequentially

$s_1 \xrightarrow{a_1} r_2, s_2 \xrightarrow{a_2} r_3, s_3 \xrightarrow{a_3} \cdots \quad s_k \xrightarrow{a_k} r_{k+1}, s_{k+1} \xrightarrow{a_{k+1}} \cdots$

experience from which we learn

$$v_{k+1} := r_{k+1} + \gamma \max_a Q_k(s_{k+1}, a)$$

given $0 \leq \gamma < 1$, $Q_1 : (S \times A) \rightarrow \mathbb{R}$ and $v_1 \in \mathbb{R}$, with

$$Q_{k+1}(s_k, a_k) := (1 - \alpha)Q_k(s_k, a_k) + \alpha v_{k+1}$$

for $0 \leq \alpha \leq 1$,
Q-Learning

Assume v_{k+1} is derived from r_{k+1}, s_{k+1}, observed sequentially

$$s_1 \xrightarrow{a_1} r_2, s_2 \xrightarrow{a_2} r_3, s_3 \xrightarrow{a_3} \cdots s_k \xrightarrow{a_k} r_{k+1}, s_{k+1} \xrightarrow{a_{k+1}} \cdots$$

experience from which we learn

$$v_{k+1} := r_{k+1} + \gamma \max_a Q_k(s_{k+1}, a)$$

given $0 \leq \gamma < 1$, $Q_1 : (S \times A) \rightarrow \mathbb{R}$ and $v_1 \in \mathbb{R}$, with

$$Q_{k+1}(s_k, a_k) := (1 - \alpha)Q_k(s_k, a_k) + \alpha v_{k+1}$$

for $0 \leq \alpha \leq 1$, smelling like

$$A_{k+1} = (1 - \alpha_{k+1})A_k + \alpha_{k+1} v_{k+1} \quad \text{for } \alpha_{k+1} = \frac{1}{k + 1}$$

from previous slide (on TD).
Averaging?

\[v_{k+1} = r_{k+1} + \gamma \max_a Q_k(s_{k+1}, a) \]

\[Q_{k+1}(s_k, a_k) = (1 - \alpha) Q_k(s_k, a_k) + \alpha v_{k+1} \]

\[A_{k+1} \neq Q_k(s_{k-1}, a_{k-1}) = A_k \]
Averaging?

\[v_{k+1} = r_{k+1} + \gamma \max_a Q_k(s_{k+1}, a) \]
\[Q_{k+1}(s_k, a_k) = (1 - \alpha) Q_k(s_k, a_k) + \alpha v_{k+1} \]
\[A_{k+1} \neq Q_k(s_{k-1}, a_{k-1}) = A_k \]

for a deterministic MDP

i.e., \(p(s, a, s') \in \{0, 1\} \) for all \(s, a, s' \)

let \(\alpha = 1 \) as \(v_{k+1} \) may look-ahead further than \(Q_k \) for the experience \(s_k, a_k, r_{k+1}, s_{k+1} \) (determined by \(s_k, a_k \))
Averaging?

\[v_{k+1} = r_{k+1} + \gamma \max_a Q_k(s_{k+1}, a) \]

\[Q_{k+1}(s_k, a_k) = (1 - \alpha) Q_k(s_k, a_k) + \alpha v_{k+1} \]

\[A_{k+1} \neq Q_k(s_{k-1}, a_{k-1}) = A_k \]

for a deterministic MDP

i.e., \(p(s, a, s') \in \{0, 1\} \) for all \(s, a, s' \)

let \(\alpha = 1 \) as \(v_{k+1} \) may look-ahead further than \(Q_k \) for the experience \(s_k, a_k, r_{k+1}, s_{k+1} \) (determined by \(s_k, a_k \))

for \(0 < p(s, a, s') < 1 \), sample \(s' \) at frequency \(\propto p(s, a, s') \) to average \(Q \) as a whole (not just \(Q(s, a) \) at a particular \((s, a) \)), converging to optimal \(Q \) under certain assumptions, including

\[\sum \alpha_k = \infty \quad \text{and} \quad \sum \alpha_k^2 < \infty \quad (\text{e.g. } \alpha_k = \frac{1}{k}) \]
MDP, one experience at a time

Update $q : (S \times A) \rightarrow \mathbb{R}$ via p, r for

$$q'(s, a) := \sum_{s'} p(s, a, s')(r(s, a, s') + \gamma \max_{a'} q(s', a'))$$

or pointwise via experience $s_1 \xrightarrow{a_1} r_2, s_2$ for

$$q'(s, a) := \begin{cases}
\alpha(r_2 + \gamma \max_{a'} q(s_2, a')) \\
+ (1 - \alpha)q(s, a) & \text{if } s = s_1 \text{ and } a = a_1 \\
q(s, a) & \text{otherwise.}
\end{cases}$$
MDP, one experience at a time

Update $q : (S \times A) \rightarrow \mathbb{R}$ via p, r for

$$q'(s, a) := \sum_{s'} p(s, a, s')(r(s, a, s') + \gamma \max_{a'} q(s', a'))$$

or pointwise via experience $s_1 \xrightarrow{a_1} r_2, s_2$ for

$$q'(s, a) := \begin{cases}
\alpha(r_2 + \gamma \max_{a'} q(s_2, a')) & \text{if } s = s_1 \text{ and } a = a_1 \\
+ (1 - \alpha)q(s, a) & \text{if } s = s_1 \text{ and } a = a_1 \text{ otherwise.} \\
q(s, a) & \text{otherwise.}
\end{cases}$$

To converge to MDP’s optimal Q-value, visit every state-action pair (s, a) repeatedly (for $s \xrightarrow{a} r', s'$ with diff s', r' under p, r).
MDP, one experience at a time

Update $q : (S \times A) \to \mathbb{R}$ via p, r for

$$q'(s, a) := \sum_{s'} p(s, a, s')(r(s, a, s') + \gamma \max_{a'} q(s', a'))$$

or pointwise via experience $s_1 \xrightarrow{a_1} r_2, s_2$ for

$$q'(s, a) := \begin{cases}
\alpha (r_2 + \gamma \max_{a'} q(s_2, a')) \\
+ (1 - \alpha) q(s, a) & \text{if } s = s_1 \text{ and } a = a_1 \\
q(s, a) & \text{otherwise.}
\end{cases}$$

To converge to MDP’s optimal Q-value, visit every state-action pair (s, a) repeatedly (for $s \xrightarrow{a} r', s'$ with diff s', r' under p, r).

End episode

$$s_1 \xrightarrow{a_1} r_2, s_2 \xrightarrow{a_2} r_3, s_3 \xrightarrow{a_3} \cdots \xrightarrow{a_{n-1}} r_n, s_n$$

at an absorbing state s_n with $r(s_n, a, s_n) = 0$ for every action a.

17 / 20
Exploration-exploitation tradeoff

\[s \xrightarrow{a} r', s' \quad r', s' \text{ from environment, but } a? \]

\[Q_{n+1}(s, a) := \alpha[r' + \gamma \max_{a'} Q_n(s', a')] + (1 - \alpha)Q_n(s, a) \]

from functional policy \(\pi : S \to A \quad \text{[e.g. } \pi_Q(s) = \arg \max_a Q(s, a)] \)
Exploration-exploitation tradeoff

\[
s \xrightarrow{a} r', s' \quad \text{r', s' from environment, but } a?
\]

\[
Q_{n+1}(s, a) := \alpha [r' + \gamma \max_{a'} Q_n(s', a')] + (1 - \alpha) Q_n(s, a)
\]

from functional policy \(\pi : S \rightarrow A \) [e.g. \(\pi_Q(s) = \arg \max_a Q(s, a) \)]

to \(\pi : (S \times A) \rightarrow [0, 1] \) s.t. \(\sum_{a \in A} \pi(s, a) = 1 \) for each \(s \in S \)

e.g. for \(n \) actions, \(m \) having max \(Q(s, \cdot) \)

\[
\pi^\epsilon_Q(s, a) = \begin{cases}
\frac{1-\epsilon}{m} + \frac{\epsilon}{n} & \text{if } Q(s, a) \text{ is max} \\
\frac{\epsilon}{n} & \text{otherwise}
\end{cases} \\
\]

(†) says exploit: use what we know

(‡) says explore: try something new (for the future)
Exploration-exploitation tradeoff

\[s \xrightarrow{a} r', s' \xrightarrow{a'} \cdots \quad r', s' \text{ from environment, but } a? \]

\[Q_{n+1}(s, a) := \alpha[r' + \gamma \max_{a'} Q_n(s', a')] + (1 - \alpha)Q_n(s, a) \]

from functional policy \(\pi : S \to A \) [e.g. \(\pi_Q(s) = \arg \max_a Q(s, a) \)]

to \(\pi : (S \times A) \to [0, 1] \) s.t. \(\sum_{a \in A} \pi(s, a) = 1 \) for each \(s \in S \)

e.g. for \(n \) actions, \(m \) having max \(Q(s, \cdot) \)

\[\pi^\epsilon_Q(s, a) = \begin{cases} \frac{1 - \epsilon}{m} + \frac{\epsilon}{n} & \text{if } Q(s, a) \text{ is max (†)} \\ \frac{\epsilon}{n} & \text{otherwise (‡)} \end{cases} \]

(†) says exploit: use what we know

(‡) says explore: try something new (for the future)

SARSA: replace \(\arg \max \) by policy in use

\[Q_{n+1}(s, a) := \alpha[r' + \gamma Q_n(s', a')] + (1 - \alpha)Q_n(s, a) \]