Given a
specification R of immediate rewards after particular actions

calculate the return @ of particular actions over time via

Q= jim @

1/22

A generalisation
Given a

specification R of immediate rewards after particular actions

calculate the return @ of particular actions over time via

Q= jim @

Qni1(s,s’) == R(s,s')+ % max{Qn(s',s") | arc=(s',s")} (1)
Qni1(s,a) = a[R(s,a) +ymax{Qn(s',d) | &' € A}]
+ (1=)Qn(s,a) (2)

2/22

A generalisation
Given a

specification R of immediate rewards after particular actions
calculate the return @ of particular actions over time via

Q= jim @

Qni1(s,s’) == R(s,s')+ % max{Qn(s',s") | arc=(s',s")} (1)
Qni1(s,a) = a[R(s,a) +ymax{Qn(s',d) | &' € A}]
+ (1=)Qn(s,a) (2)

(1) is (2) with action a resulting in s’
deterministically for a« = 1, with v = 3

s’ is learned from experience (environment)

3/22

Markov decision process (MDP)
a 5-tuple (S, A, p, r,~y) consisting of
» a finite set S of states s, 5/, ...
» a finite set A of actions a, ...
» a function p: S x Ax S —[0,1]

p(s,a,s’) = prob(s’|s,a) = how probable is s’ after doing a at s

Zp(s,a,s') = lforallac A s€8§

S/

4/22

Markov decision process (MDP)
a 5-tuple (S, A, p, r,~y) consisting of
» a finite set S of states s, 5/, ...
» a finite set A of actions a, ...
» a function p: S x Ax S —[0,1]

p(s,a,s’) = prob(s’|s,a) = how probable is s’ after doing a at s

Zp(s,a,s') = lforallac A s€8§

» afunctionr:SxAxS—R

r(s,a,s') = expected immediate reward for s = s’

5/22

Markov decision process (MDP)
a 5-tuple (S, A, p, r,~y) consisting of
» a finite set S of states s, 5/, ...
» a finite set A of actions a, ...
» a function p: S x Ax S —[0,1]

p(s,a,s’) = prob(s’|s,a) = how probable is s’ after doing a at s

Zp(s,a,s') = lforallac A s€8§

S/
» afunctionr: SxAxS =R
r(s,a,s') = expected immediate reward for s = s’

» a discount factor v € [0,1]

6/22

Markov decision process (MDP)
a 5-tuple (S, A, p, r,~y) consisting of
» a finite set S of states s, 5/, ...
» a finite set A of actions a, ...
» a function p: S x Ax S —[0,1]

p(s,a,s’) = prob(s’|s,a) = how probable is s’ after doing a at s

Zp(s,a,s') = lforallac A s€8§

S/
» afunctionr: SxAxS =R
r(s,a,s') = expected immediate reward for s = s’

» a discount factor v € [0,1]

Missing: policy 7 : S — A (what to do at s)

7/22

Exercise (Poole & Mackworth, chap 12)

Sam is either fit or unfit
S = {fit, unfit}
and has to decide whether to exercise or relax

A = {exercise, relax}.

8/22

Exercise (Poole & Mackworth, chap 12)

Sam is either fit or unfit
S = {fit, unfit}
and has to decide whether to exercise or relax
A = {exercise, relax}.

p(s,a,s’) and r(s, a,s’) are a-table entries for row s, col s’

exercise ‘ fit unfit relax ‘ fit unfit
fit .99, 8 fit 7,10
unfit 2,0 unfit | 0,5

immediate rewards do not
depend on the resulting state

9/22

Exercise (Poole & Mackworth, chap 12)

Sam is either fit or unfit
S = {fit, unfit}
and has to decide whether to exercise or relax
A = {exercise, relax}.

p(s,a,s’) and r(s, a,s’) are a-table entries for row s, col s’

exercise ‘ fit unfit relax ‘ fit unfit
fit 99,8 .01, 8 fit 7,10 3,10
unfit 2,0 80 unfit | 0,5 1,5

Entries in red follow from assuming immediate rewards do not
depend on the resulting state, and

Zp(s, a,s) =1
s/

10/22

Grid World

+3

states: 100 positions
5 actions: up, down, left, right
-1 i . L
punish -1 when banging into wall
& 4 reward/punish states
m L 1d prob: 0.7 as directed (if possible)

-1

Poole & Mackworth, 12.5

11/22

https://artint.info/3e/html/ArtInt3e.Ch12.S5.html

Policy from an MDP

Given state s, pick action a that maximizes return

different outcomes s’ discounted future

—

Zp (r(s,a,s")+V(s))
H,_/
immediate

for V tied back to @ via policy 7: S — A
Va(s) = Q(s,7(s))

12/22

Policy from an MDP

Given state s, pick action a that maximizes return

different outcomes s’ discounted future

—

Zp (r(s,a,s")+V(s))
H,_/
immediate

for V tied back to @ via policy 7: S — A
Vi(s) = Q(s,m(s))
e.g., the greedy Q-policy above
7(s) = arg max Q(s, a)
for

Q(s,a) = Z p(s,a,s')(r(s,a,s') +v max Q(s',d))

sl

13/22

Value iteration

Mutual recursion between Q/V and 7
value of an action/state vs what to do at a state

14/22

Value iteration

Mutual recursion between Q/V and 7
value of an action/state vs what to do at a state

Focus on Q, approached in the limit
lim g,
n—o0

from iterates

qo(s,a) = Zp(s, a,s')r(s,a,s’)
s/

gns1(s,a) = E p(s,a,s’)(r(s,a,s’)+7m§an(s’,a’))
a
s/

15/22

Value iteration

Mutual recursion between Q/V and 7
value of an action/state vs what to do at a state

Focus on Q, approached in the limit
lim g,
n—o0

from iterates

qo(s,a) = Zp(s, a,s')r(s,a,s’)
s/

gns1(s,a) = E p(s,a,s’)(r(s,a,s’)+7m§an(s’,a’))
a
s/

In case p(s,a,s’) =1 for some s’ (necessarily unique),
the iterates simplify to

qo(s,a) = r(s,a,s’)
dnt1(s,a) = r(s,a, 5/) + 7y max qn(sla a/)
a/

16/22

Determinstic actions and absorbing states (game over)

Fix an MDP with min reward m.
An action a is s-deterministic if p(s,a,s’) =1 for some s’

17/22

Determinstic actions and absorbing states (game over)
Fix an MDP with min reward m.
An action a is s-deterministic if p(s,a,s’) =1 for some s’.
A state s is absorbing if p(s,a,s) =1 for every action a, whence

Q(s,3) = r(s,3,5) + 1 V(s)
V(s) = T where ry = max r(s,a,s)

A state s is a sink if it is absorbing and r(s, a,s) = m for all a.

18/22

Determinstic actions and absorbing states (game over)
Fix an MDP with min reward m.
An action a is s-deterministic if p(s,a,s’) =1 for some s’.
A state s is absorbing if p(s,a,s) =1 for every action a, whence

Q(s,3) = r(s,3,5) + 1 V(s)
V(s) = T where ry = max r(s,a,s)

A state s is a sink if it is absorbing and r(s, a,s) = m for all a.
An action a is an s-drain if for some sink s,

p(s,a,s') =1and r(s,a,s') =m

19/22

Determinstic actions and absorbing states (game over)

Fix an MDP with min reward m.
An action a is s-deterministic if p(s,a,s’) =1 for some s’.
A state s is absorbing if p(s,a,s) =1 for every action a, whence

Q(s,3) = r(s,3,5) + 1 V(s)
V(s) = T where ry = max r(s,a,s)

A state s is a sink if it is absorbing and r(s, a,s) = m for all a.
An action a is an s-drain if for some sink s,

p(s,a,s') =1and r(s,a,s') =m

Let
A(s) := {a€ A ais not an s-drain}

so if A(s) # 0,
V(s) = max{Q(s,a) | a€ A} = max{Q(s,a) | a€ A(s)}

20/22

Arcs & goals as a deterministic MDP (p € {0, 1})
Given arc and goal set G, let
A= {s|(3s) arc_(s',s)} = S
where for each a € A,
n | 1 ifa=s"and arc—(s,s)
pls,a,s) = { 0 otherwise

R(s,s’) ifa=s"and arc_(s,s’)
anything otherwise

r(s,a,s)

21/22

Arcs & goals as a deterministic MDP (p € {0, 1})

Given arc and goal set G, let
A= {s|(3s) arc_(s',s)} = S
where for each a € A,
n | 1 ifa=s"and arc—(s,s)
pls,a,s) = { 0 otherwise
/ H _ /
Hs,a,8) = R(s, s) if a= s and arc—(s,s’)
anything otherwise
Satisfy prob constraint Y p(s,a,s’) = 1 via sink state L ¢ A,
requiring of every a€ Aand s € S,

{ 1 if not arc_(s, a)

p(s,a,1) = 0 otherwise

1 ifs=_1
p(L,a,s) = { 0 otherwise

r(s,a, L) = min reward

22/22

