Given a
specification R of immediate rewards after particular actions calculate the return Q of particular actions over time via

$$
Q=\lim _{n \rightarrow \infty} Q_{n}
$$

A generalisation

Given a

specification R of immediate rewards after particular actions
calculate the return Q of particular actions over time via

$$
\begin{gather*}
Q=\lim _{n \rightarrow \infty} Q_{n} \\
Q_{n+1}\left(s, s^{\prime}\right):=R\left(s, s^{\prime}\right)+\frac{1}{2} \max \left\{Q_{n}\left(s^{\prime}, s^{\prime \prime}\right) \mid \operatorname{arc}_{=}\left(s^{\prime}, s^{\prime \prime}\right)\right\} \tag{1}
\end{gather*}
$$

$$
\begin{align*}
Q_{n+1}(s, a) \approx & \alpha\left[R(s, a)+\gamma \max \left\{Q_{n}\left(s^{\prime}, a^{\prime}\right) \mid a^{\prime} \in A\right\}\right] \\
& +(1-\alpha) Q_{n}(s, a) \tag{2}
\end{align*}
$$

A generalisation

Given a

specification R of immediate rewards after particular actions calculate the return Q of particular actions over time via

$$
\begin{gather*}
Q=\lim _{n \rightarrow \infty} Q_{n} \\
Q_{n+1}\left(s, s^{\prime}\right):=R\left(s, s^{\prime}\right)+\frac{1}{2} \max \left\{Q_{n}\left(s^{\prime}, s^{\prime \prime}\right) \mid \operatorname{arc}_{=}\left(s^{\prime}, s^{\prime \prime}\right)\right\} \tag{1}
\end{gather*}
$$

\leadsto

$$
\begin{align*}
Q_{n+1}(s, a) \approx & \alpha\left[R(s, a)+\gamma \max \left\{Q_{n}\left(s^{\prime}, a^{\prime}\right) \mid a^{\prime} \in A\right\}\right] \\
& +(1-\alpha) Q_{n}(s, a) \tag{2}
\end{align*}
$$

(1)	(2)	(1) is (2) with action a resulting in s^{\prime} s^{\prime} $a$$\quad$deterministically for $\alpha=1$, with $\gamma=\frac{1}{2}$ 1α^{2}

Markov decision process (MDP)

a 5-tuple $\langle S, A, p, r, \gamma\rangle$ consisting of

- a finite set S of states s, s^{\prime}, \ldots
- a finite set A of actions a, \ldots
- a function $p: S \times A \times S \rightarrow[0,1]$

$$
p\left(s, a, s^{\prime}\right)=\operatorname{prob}\left(s^{\prime} \mid s, a\right)=\text { how probable is } s^{\prime} \text { after doing } a \text { at } s
$$

$$
\sum_{s^{\prime}} p\left(s, a, s^{\prime}\right)=1 \text { for all } a \in A, s \in S
$$

Markov decision process (MDP)

a 5-tuple $\langle S, A, p, r, \gamma\rangle$ consisting of

- a finite set S of states s, s^{\prime}, \ldots
- a finite set A of actions a, \ldots
- a function $p: S \times A \times S \rightarrow[0,1]$

$$
p\left(s, a, s^{\prime}\right)=\operatorname{prob}\left(s^{\prime} \mid s, a\right)=\text { how probable is } s^{\prime} \text { after doing } a \text { at } s
$$

$$
\sum_{s^{\prime}} p\left(s, a, s^{\prime}\right)=1 \text { for all } a \in A, s \in S
$$

- a function $r: S \times A \times S \rightarrow \mathbb{R}$

$$
r\left(s, a, s^{\prime}\right)=\text { expected immediate reward for } s \xrightarrow{a} s^{\prime}
$$

Markov decision process (MDP)

a 5-tuple $\langle S, A, p, r, \gamma\rangle$ consisting of

- a finite set S of states s, s^{\prime}, \ldots
- a finite set A of actions a, \ldots
- a function $p: S \times A \times S \rightarrow[0,1]$

$$
\begin{aligned}
p\left(s, a, s^{\prime}\right)=\operatorname{prob}\left(s^{\prime} \mid s, a\right) & =\text { how probable is } s^{\prime} \text { after doing } a \text { at } s \\
\sum_{s^{\prime}} p\left(s, a, s^{\prime}\right) & =1 \text { for all } a \in A, s \in S
\end{aligned}
$$

- a function $r: S \times A \times S \rightarrow \mathbb{R}$

$$
r\left(s, a, s^{\prime}\right)=\text { expected immediate reward for } s \xrightarrow{a} s^{\prime}
$$

- a discount factor $\gamma \in[0,1]$

Markov decision process (MDP)

a 5-tuple $\langle S, A, p, r, \gamma\rangle$ consisting of

- a finite set S of states s, s^{\prime}, \ldots
- a finite set A of actions a, \ldots
- a function $p: S \times A \times S \rightarrow[0,1]$

$$
\begin{aligned}
p\left(s, a, s^{\prime}\right)=\operatorname{prob}\left(s^{\prime} \mid s, a\right) & =\text { how probable is } s^{\prime} \text { after doing } a \text { at } s \\
\sum_{s^{\prime}} p\left(s, a, s^{\prime}\right) & =1 \text { for all } a \in A, s \in S
\end{aligned}
$$

- a function $r: S \times A \times S \rightarrow \mathbb{R}$

$$
r\left(s, a, s^{\prime}\right)=\text { expected immediate reward for } s \xrightarrow{a} s^{\prime}
$$

- a discount factor $\gamma \in[0,1]$

Missing: policy $\pi: S \rightarrow A$ (what to do at s)

Exercise (Poole \& Mackworth, chap 12)

Sam is either fit or unfit

$$
S=\{\text { fit, unfit }\}
$$

and has to decide whether to exercise or relax

$$
A=\{\text { exercise, relax }\}
$$

Exercise (Poole \& Mackworth, chap 12)

Sam is either fit or unfit

$$
S=\{\text { fit, unfit }\}
$$

and has to decide whether to exercise or relax

$$
A=\{\text { exercise, relax }\}
$$

$p\left(s, a, s^{\prime}\right)$ and $r\left(s, a, s^{\prime}\right)$ are a-table entries for row s, col s^{\prime}

exercise	fit	unfit
fit	$.99,8$	
unfit	$.2,0$	

relax	fit	unfit
fit	$.7,10$	
unfit	0,5	

immediate rewards do not
depend on the resulting state

Exercise (Poole \& Mackworth, chap 12)

Sam is either fit or unfit

$$
S=\{\text { fit, unfit }\}
$$

and has to decide whether to exercise or relax

$$
A=\{\text { exercise, relax }\}
$$

$p\left(s, a, s^{\prime}\right)$ and $r\left(s, a, s^{\prime}\right)$ are a-table entries for row s, col s^{\prime}

exercise	fit	unfit		relax	fit	unfit
fit	$.99,8$	$.01,8$				
		fit	$.7,10$	$.3,10$		
unfit	$.2,0$	$.8,0$		unfit	0,5	1,5

Entries in red follow from assuming immediate rewards do not depend on the resulting state, and

$$
\sum_{s^{\prime}} p\left(s, a, s^{\prime}\right)=1
$$

Grid World

states: 100 positions actions: up, down, left, right punish -1 when banging into wall \& 4 reward/punish states prob: 0.7 as directed (if possible)

Poole \& Mackworth, 12.5

Policy from an MDP

Given state s, pick action a that maximizes return

$$
Q(s, a):=\sum_{s^{\prime}} \overbrace{p\left(s, a, s^{\prime}\right)}^{\text {different outcomes } s^{\prime} \quad(\underbrace{r\left(s, a, s^{\prime}\right)}_{\text {immediate }}+\overbrace{\gamma V\left(s^{\prime}\right)}^{\text {discounted future }})}
$$

for V tied back to Q via policy $\pi: S \rightarrow A$

$$
V_{\pi}(s):=Q(s, \pi(s))
$$

Policy from an MDP

Given state s, pick action a that maximizes return different outcomes s^{\prime} discounted future

$$
Q(s, a):=\sum_{s^{\prime}} \overbrace{p\left(s, a, s^{\prime}\right)}(\underbrace{r\left(s, a, s^{\prime}\right)}_{\text {immediate }}+\overbrace{\gamma V\left(s^{\prime}\right)})
$$

for V tied back to Q via policy $\pi: S \rightarrow A$

$$
V_{\pi}(s):=Q(s, \pi(s))
$$

e.g., the greedy Q-policy above

$$
\pi(s):=\arg \max _{a} Q(s, a)
$$

for

$$
Q(s, a)=\sum_{s^{\prime}} p\left(s, a, s^{\prime}\right)\left(r\left(s, a, s^{\prime}\right)+\gamma \max _{a^{\prime}} Q\left(s^{\prime}, a^{\prime}\right)\right)
$$

Value iteration

Mutual recursion between Q / V and π
value of an action/state vs what to do at a state

Value iteration

Mutual recursion between Q / V and π
value of an action/state vs what to do at a state
Focus on Q, approached in the limit

$$
\lim _{n \rightarrow \infty} q_{n}
$$

from iterates

$$
\begin{aligned}
q_{0}(s, a) & :=\sum_{s^{\prime}} p\left(s, a, s^{\prime}\right) r\left(s, a, s^{\prime}\right) \\
q_{n+1}(s, a) & :=\sum_{s^{\prime}} p\left(s, a, s^{\prime}\right)\left(r\left(s, a, s^{\prime}\right)+\gamma \max _{a^{\prime}} q_{n}\left(s^{\prime}, a^{\prime}\right)\right)
\end{aligned}
$$

Value iteration

Mutual recursion between Q / V and π
value of an action/state vs what to do at a state
Focus on Q, approached in the limit

$$
\lim _{n \rightarrow \infty} q_{n}
$$

from iterates

$$
\begin{aligned}
q_{0}(s, a) & :=\sum_{s^{\prime}} p\left(s, a, s^{\prime}\right) r\left(s, a, s^{\prime}\right) \\
q_{n+1}(s, a) & :=\sum_{s^{\prime}} p\left(s, a, s^{\prime}\right)\left(r\left(s, a, s^{\prime}\right)+\gamma \max _{a^{\prime}} q_{n}\left(s^{\prime}, a^{\prime}\right)\right)
\end{aligned}
$$

In case $p\left(s, a, s^{\prime}\right)=1$ for some s^{\prime} (necessarily unique), the iterates simplify to

$$
\begin{aligned}
q_{0}(s, a) & :=r\left(s, a, s^{\prime}\right) \\
q_{n+1}(s, a) & :=r\left(s, a, s^{\prime}\right)+\gamma \max _{a^{\prime}} q_{n}\left(s^{\prime}, a^{\prime}\right)
\end{aligned}
$$

Determinstic actions and absorbing states (game over)

Fix an MDP with min reward m.
An action a is s-deterministic if $p\left(s, a, s^{\prime}\right)=1$ for some s^{\prime}.

Determinstic actions and absorbing states (game over)

Fix an MDP with min reward m.
An action a is s-deterministic if $p\left(s, a, s^{\prime}\right)=1$ for some s^{\prime}.
A state s is absorbing if $p(s, a, s)=1$ for every action a, whence

$$
\begin{aligned}
Q(s, a) & =r(s, a, s)+\gamma V(s) \\
V(s) & =\frac{r_{s}}{1-\gamma} \text { where } r_{s}=\max _{a} r(s, a, s)
\end{aligned}
$$

A state s is a sink if it is absorbing and $r(s, a, s)=m$ for all a.

Determinstic actions and absorbing states (game over)

Fix an MDP with min reward m.
An action a is s-deterministic if $p\left(s, a, s^{\prime}\right)=1$ for some s^{\prime}.
A state s is absorbing if $p(s, a, s)=1$ for every action a, whence

$$
\begin{aligned}
Q(s, a) & =r(s, a, s)+\gamma V(s) \\
V(s) & =\frac{r_{s}}{1-\gamma} \text { where } r_{s}=\max _{a} r(s, a, s)
\end{aligned}
$$

A state s is a sink if it is absorbing and $r(s, a, s)=m$ for all a. An action a is an s-drain if for some sink s^{\prime},

$$
p\left(s, a, s^{\prime}\right)=1 \text { and } r\left(s, a, s^{\prime}\right)=m
$$

Determinstic actions and absorbing states (game over)

Fix an MDP with min reward m.
An action a is s-deterministic if $p\left(s, a, s^{\prime}\right)=1$ for some s^{\prime}.
A state s is absorbing if $p(s, a, s)=1$ for every action a, whence

$$
\begin{aligned}
Q(s, a) & =r(s, a, s)+\gamma V(s) \\
V(s) & =\frac{r_{s}}{1-\gamma} \text { where } r_{s}=\max _{a} r(s, a, s)
\end{aligned}
$$

A state s is a sink if it is absorbing and $r(s, a, s)=m$ for all a. An action a is an s-drain if for some sink s^{\prime},

$$
p\left(s, a, s^{\prime}\right)=1 \text { and } r\left(s, a, s^{\prime}\right)=m
$$

Let

$$
A(s):=\{a \in A \mid a \text { is not an s-drain }\}
$$

so if $A(s) \neq \emptyset$,

$$
V(s)=\max \{Q(s, a) \mid a \in A\}=\max \{Q(s, a) \mid a \in A(s)\}
$$

Arcs \& goals as a deterministic MDP $(p \in\{0,1\})$
Given arc and goal set G, let

$$
A=\left\{s \mid\left(\exists s^{\prime}\right) \operatorname{arc}=\left(s^{\prime}, s\right)\right\}=S
$$

where for each $a \in A$,

$$
\begin{aligned}
p\left(s, a, s^{\prime}\right) & = \begin{cases}1 & \text { if } a=s^{\prime} \text { and } \operatorname{arc}=\left(s, s^{\prime}\right) \\
0 & \text { otherwise }\end{cases} \\
r\left(s, a, s^{\prime}\right) & = \begin{cases}R\left(s, s^{\prime}\right) & \text { if } a=s^{\prime} \text { and } \operatorname{arc}=\left(s, s^{\prime}\right) \\
\text { anything } & \text { otherwise }\end{cases}
\end{aligned}
$$

Arcs \& goals as a deterministic MDP $(p \in\{0,1\})$

Given arc and goal set G, let

$$
A=\left\{s \mid\left(\exists s^{\prime}\right) \operatorname{arc}=\left(s^{\prime}, s\right)\right\}=S
$$

where for each $a \in A$,

$$
\begin{aligned}
p\left(s, a, s^{\prime}\right) & = \begin{cases}1 & \text { if } a=s^{\prime} \text { and } \operatorname{arc}=\left(s, s^{\prime}\right) \\
0 & \text { otherwise }\end{cases} \\
r\left(s, a, s^{\prime}\right) & = \begin{cases}R\left(s, s^{\prime}\right) & \text { if } a=s^{\prime} \text { and } \operatorname{arc}=\left(s, s^{\prime}\right) \\
\text { anything } & \text { otherwise }\end{cases}
\end{aligned}
$$

Satisfy prob constraint $\sum_{s^{\prime}} p\left(s, a, s^{\prime}\right)=1$ via sink state $\perp \notin A$, requiring of every $a \in A$ and $s \in S$,

$$
\begin{aligned}
& p(s, a, \perp)= \begin{cases}1 & \text { if not } \operatorname{arc}=(s, a) \\
0 & \text { otherwise }\end{cases} \\
& p(\perp, a, s)= \begin{cases}1 & \text { if } s=\perp \\
0 & \text { otherwise }\end{cases} \\
& r(s, a, \perp)=\text { min reward }
\end{aligned}
$$

