
Slides mainly from Poole & Mackworth, chap 15

Datalog based on the following assumptions

An agent’s knowledge can be usefully described in terms of
individuals and relations among individuals.

An agent’s knowledge base consists of definite and positive
statements.

The environment is static.

There are only a finite number of individuals of interest in the
domain.
An individual can be named.

1 / 32

http://artint.info/3e/html/ArtInt3e.Ch15.html

Datalog syntax

A variable starts with upper-case letter.

A constant starts with lower-case letter or is a sequence of
digits (numeral).

A predicate symbol starts with lower-case letter.

A term is either a variable or a constant.

An atomic symbol (atom) is of the form p or p(t1, . . . , tn)
where p is a predicate symbol and ti are terms.

2 / 32

Datalog syntax (ctd)

A definite clause is either an atomic symbol (a fact) or of the
form:

a︸︷︷︸ ← b1 ∧ · · · ∧ bm︸ ︷︷ ︸
head body

where a and bi are atomic symbols.

query is of the form ?b1 ∧ · · · ∧ bm.

knowledge base is a set of definite clauses.

3 / 32

Semantics: General Idea

A semantics specifies the meaning of sentences in the language.
An interpretation specifies:

what objects (individuals) are in the world

the correspondence between symbols in the computer and
objects & relations in world
I constants denote individuals
I predicate symbols denote relations

4 / 32

Formal Semantics

An interpretation is a triple I = 〈D, φ, π〉, where

D, the domain, is a nonempty set. Elements of D are
individuals.

φ is a mapping that assigns to each constant an element of
D. Constant c denotes individual φ(c).

π is a mapping that assigns to each n-ary predicate symbol a
relation: a function from Dn into {TRUE, FALSE}.

5 / 32

Example Interpretation

Constants: phone, pencil , telephone.
Predicate Symbol: noisy (unary), left of (binary).

D = {",%,.}.
φ(phone) = %, φ(pencil) = ., φ(telephone) = %.

π(noisy): 〈"〉 FALSE 〈%〉 TRUE 〈.〉 FALSE

π(left of):
〈","〉 FALSE 〈",%〉 TRUE 〈",.〉 TRUE

〈%,"〉 FALSE 〈%,%〉 FALSE 〈%,.〉 TRUE

〈.,"〉 FALSE 〈.,%〉 FALSE 〈.,.〉 FALSE

6 / 32

Important points to note

The domain D can contain real objects. (e.g., a person, a
room, a course). D can’t necessarily be stored in a computer.

π(p) specifies whether the relation denoted by the n-ary
predicate symbol p is true or false for each n-tuple of
individuals.

If predicate symbol p has no arguments, then π(p) is either
TRUE or FALSE.

7 / 32

Truth in an interpretation

A constant c denotes in I the individual φ(c).
Ground (variable-free) atom p(t1, . . . , tn) is

true in interpretation I if π(p)(〈φ(t1), . . . , φ(tn)〉) = TRUE in
interpretation I and

false otherwise.

Ground clause h← b1 ∧ . . . ∧ bm is false in interpretation I if h is
false in I and each bi is true in I , and is true in interpretation I
otherwise.

8 / 32

Example Truths

In the interpretation given before, which of following are true?

noisy(phone)

true

noisy(telephone)

true

noisy(pencil)

false

left of (phone, pencil)

true

left of (phone, telephone)

false

noisy(phone)← left of (phone, telephone)

true

noisy(pencil)← left of (phone, telephone)

true

noisy(pencil)← left of (phone, pencil)

false

noisy(phone)← noisy(telephone) ∧ noisy(pencil)

true

9 / 32

Example Truths

In the interpretation given before, which of following are true?

noisy(phone) true
noisy(telephone) true
noisy(pencil) false
left of (phone, pencil) true
left of (phone, telephone) false
noisy(phone)← left of (phone, telephone) true
noisy(pencil)← left of (phone, telephone) true
noisy(pencil)← left of (phone, pencil) false
noisy(phone)← noisy(telephone) ∧ noisy(pencil) true

10 / 32

Models and logical consequences

A knowledge base, KB, is true in interpretation I if and only if
every clause in KB is true in I .

A model of a set of clauses is an interpretation in which all
the clauses are true.

If KB is a set of clauses and g is a conjunction of atoms, g is
a logical consequence of KB, written KB |= g , if g is true in
every model of KB.

That is, KB |= g if there is no interpretation in which KB is
true and g is false.

11 / 32

User’s view of Semantics

1. Choose a task domain: intended interpretation.

2. Associate constants with individuals you want to name.

3. For each relation you want to represent, associate a predicate
symbol in the language.

4. Tell the system clauses that are true in the intended
interpretation: axiomatizing the domain.

5. Ask questions about the intended interpretation.

6. If KB |= g , then g must be true in the intended interpretation.

12 / 32

Computer’s view of semantics

The computer doesn’t have access to the intended
interpretation.

All it knows is the knowledge base.

The computer can determine if a formula is a logical
consequence of KB.

If KB |= g then g must be true in the intended interpretation.

If KB 6|= g then there is a model of KB in which g is false.
This could be the intended interpretation.

13 / 32

Semantics in the mind

in(kim,cs_building)

in(kim,r123).
part_of(r123,cs_building).
in(X,Y) ←
 part_of(Z,Y) ∧
 in(X,Z).

kim
r123
r023

cs_building
in(,)

part_of(,)
person()

14 / 32

Soundness and completeness

Recall that g is a logical consequence of KB, KB |= g , precisely if
g is true in all models of KB.

Let ` be a mechanical procedure for deriving a formula g from a
knowledge base KB, written KB ` g .

` is sound if KB |= g whenever KB ` g .

` is complete if KB ` g whenever KB |= g .

Two extreme examples:

(1) KB ` g for no g

‘say nothing’ undergenerates

sound

(2) KB ` g for all g

‘say everything’ overgenerates

complete

15 / 32

Soundness and completeness

Recall that g is a logical consequence of KB, KB |= g , precisely if
g is true in all models of KB.

Let ` be a mechanical procedure for deriving a formula g from a
knowledge base KB, written KB ` g .

` is sound if KB |= g whenever KB ` g .

` is complete if KB ` g whenever KB |= g .

Two extreme examples:

(1) KB ` g for no g

‘say nothing’ undergenerates

sound

(2) KB ` g for all g

‘say everything’ overgenerates

complete

16 / 32

Soundness and completeness

Recall that g is a logical consequence of KB, KB |= g , precisely if
g is true in all models of KB.

Let ` be a mechanical procedure for deriving a formula g from a
knowledge base KB, written KB ` g .

` is sound if KB |= g whenever KB ` g .

` is complete if KB ` g whenever KB |= g .

Two extreme examples:

(1) KB ` g for no g

‘say nothing’ undergenerates

sound

(2) KB ` g for all g

‘say everything’ overgenerates

complete

17 / 32

Soundness and completeness

Recall that g is a logical consequence of KB, KB |= g , precisely if
g is true in all models of KB.

Let ` be a mechanical procedure for deriving a formula g from a
knowledge base KB, written KB ` g .

` is sound if KB |= g whenever KB ` g .

` is complete if KB ` g whenever KB |= g .

Two extreme examples:

(1) KB ` g for no g ‘say nothing’ undergenerates
sound

(2) KB ` g for all g ‘say everything’ overgenerates
complete

18 / 32

Propositional KBs

Recall

i :- p,q.

KB = [[i,p,q],[i,r],[p],[r]]

i :- r.

arc([H|T],N,KB) :- member([H|B],KB),

p.

append(B,T,N).

r.

prove([],KB).

prove(Node,KB) :- arc(Node,Next,KB),

prove(Next,KB).

Let
KB ` G ⇐⇒ prove([G],KB)

Theorem.

(1) ` is sound (proved by induction)

(2) ` is not complete (why?)

19 / 32

Propositional KBs

Recall

i :- p,q. KB = [[i,p,q],[i,r],[p],[r]]

i :- r. arc([H|T],N,KB) :- member([H|B],KB),

p. append(B,T,N).

r. prove([],KB).

prove(Node,KB) :- arc(Node,Next,KB),

prove(Next,KB).

Let
KB ` G ⇐⇒ prove([G],KB)

Theorem.

(1) ` is sound (proved by induction)

(2) ` is not complete (why?)

20 / 32

Propositional KBs

Recall

i :- p,q. KB = [[i,p,q],[i,r],[p],[r]]

i :- r. arc([H|T],N,KB) :- member([H|B],KB),

p. append(B,T,N).

r. prove([],KB).

prove(Node,KB) :- arc(Node,Next,KB),

prove(Next,KB).

Let
KB ` G ⇐⇒ prove([G],KB)

Theorem.

(1) ` is sound (proved by induction)

(2) ` is not complete (why?)

21 / 32

Logical consequences bottom-up

C0 := ∅
Cn+1 := {H | (for some B ⊆ Cn) member([H|B],KB)}

C :=
⋃
n≥0

Cn

=
⋃
n≤k

Cn where k = number of clauses in KB

i :- p,q. KB = [[i,p,q],[i,r],[p],[r]]

i :- r. arc([H|T],N,KB) :- member([H|B],KB),

p. append(B,T,N).

r. C1 = {p,r}
C2 = {p,r,i} = Cn for n ≥ 2

22 / 32

Logical consequences bottom-up

C0 := ∅
Cn+1 := {H | (for some B ⊆ Cn) member([H|B],KB)}

C :=
⋃
n≥0

Cn

=
⋃
n≤k

Cn where k = number of clauses in KB

i :- p,q. KB = [[i,p,q],[i,r],[p],[r]]

i :- r. arc([H|T],N,KB) :- member([H|B],KB),

p. append(B,T,N).

r. C1 = {p,r}
C2 = {p,r,i} = Cn for n ≥ 2

23 / 32

Substitutions and instances

A 0-ary predicate p is interpreted by I = 〈D, φ, π〉 as

π(p) : D0 → {true,false}.

Let K be a set of constants.

A K -substitution is a function from a finite set of variables to K —
i.e. a set {V1/c1, . . . ,Vn/cn} of ci ∈ K and distinct variables Vi .

The application eθ of a K -substitution θ = {V1/c1, . . . ,Vn/cn} to
a clause e is e with each Vi replaced by ci

e.g. p(Z ,U,Y , a,X){X/b,U/a,Z/b} = p(b, a,Y , a, b).

A K -instance of e is eθ for some K -substitution θ.

Given a set B of clauses and a K -substitution θ, let

Bθ := {eθ | e ∈ B}.

24 / 32

Substitutions and instances
A 0-ary predicate p is interpreted by I = 〈D, φ, π〉 as

π(p) : D0 → {true,false}.

Let K be a set of constants.

A K -substitution is a function from a finite set of variables to K —
i.e. a set {V1/c1, . . . ,Vn/cn} of ci ∈ K and distinct variables Vi .

The application eθ of a K -substitution θ = {V1/c1, . . . ,Vn/cn} to
a clause e is e with each Vi replaced by ci

e.g. p(Z ,U,Y , a,X){X/b,U/a,Z/b} = p(b, a,Y , a, b).

A K -instance of e is eθ for some K -substitution θ.

Given a set B of clauses and a K -substitution θ, let

Bθ := {eθ | e ∈ B}.

25 / 32

Bottom-up with substitutions

If KB has constants from some non-empty finite set K , let

CK
0 := ∅

CK
n+1 := {Hθ | θ is a K -substitution s.t. Bθ ⊆ CK

n

for some B s.t. member([H|B],KB)}

CK :=
⋃
n≥0

CK
n

E.g. for KB =[[p(a,b)],[q(X),p(X,Y)]] and K = {a, b},

CK
1 = {p(a, b)}

CK
2 = {p(a, b), q(a)} = CK

26 / 32

Bottom-up with substitutions

If KB has constants from some non-empty finite set K , let

CK
0 := ∅

CK
n+1 := {Hθ | θ is a K -substitution s.t. Bθ ⊆ CK

n

for some B s.t. member([H|B],KB)}

CK :=
⋃
n≥0

CK
n

E.g. for KB =[[p(a,b)],[q(X),p(X,Y)]] and K = {a, b},

CK
1 = {p(a, b)}

CK
2 = {p(a, b), q(a)} = CK

27 / 32

Soundness & completeness via Herbrand

The Herbrand interpretation of a set KB of clauses with constants
from a non-empty set K is the triple I = 〈D, φ, π〉 where

the domain D is the set K of constants

φ is the identity function on K (each constant in K refers to
itself)

for each n-ary p and n-tuple c1 . . . cn from K ,

π(p)(c1 . . . cn) = true ⇐⇒ p(c1 . . . cn) ∈ CK

Fact. I is a model of KB, and every clause true in I is true in
every model of KB (interpreting constants in K).

Corollary. The bottom-up procedure with substitutions is sound
and complete (for Datalog).

28 / 32

https://en.wikipedia.org/wiki/Jacques_Herbrand

Soundness & completeness via Herbrand

The Herbrand interpretation of a set KB of clauses with constants
from a non-empty set K is the triple I = 〈D, φ, π〉 where

the domain D is the set K of constants

φ is the identity function on K (each constant in K refers to
itself)

for each n-ary p and n-tuple c1 . . . cn from K ,

π(p)(c1 . . . cn) = true ⇐⇒ p(c1 . . . cn) ∈ CK

Fact. I is a model of KB, and every clause true in I is true in
every model of KB (interpreting constants in K).

Corollary. The bottom-up procedure with substitutions is sound
and complete (for Datalog).

29 / 32

https://en.wikipedia.org/wiki/Jacques_Herbrand

Soundness & completeness via Herbrand

The Herbrand interpretation of a set KB of clauses with constants
from a non-empty set K is the triple I = 〈D, φ, π〉 where

the domain D is the set K of constants

φ is the identity function on K (each constant in K refers to
itself)

for each n-ary p and n-tuple c1 . . . cn from K ,

π(p)(c1 . . . cn) = true ⇐⇒ p(c1 . . . cn) ∈ CK

Fact. I is a model of KB, and every clause true in I is true in
every model of KB (interpreting constants in K).

Corollary. The bottom-up procedure with substitutions is sound
and complete (for Datalog).

30 / 32

https://en.wikipedia.org/wiki/Jacques_Herbrand

3 modes of reasoning (C.S. Peirce)

typed functional prog ∼= proof

Deduction deduce modus ponens ∼= function app f (a)
Abduction explain choose input a from assumables
Induction generalise/program choose rule/function f

From |= as inclusion ⊆

KB |= g ⇐⇒ Mod(KB) ⊆ Mod(g)

KB satisfiable ⇐⇒ Mod(KB) 6|= false

⇐⇒ Mod(KB) 6= ∅

to weighing alternatives d ∈ D via probabilities given KB

prob(d |KB) = conditional probability of d given KB

 Bayesian networks . . .

31 / 32

3 modes of reasoning (C.S. Peirce)

typed functional prog ∼= proof

Deduction deduce modus ponens ∼= function app f (a)
Abduction explain choose input a from assumables
Induction generalise/program choose rule/function f

From |= as inclusion ⊆

KB |= g ⇐⇒ Mod(KB) ⊆ Mod(g)

KB satisfiable ⇐⇒ Mod(KB) 6|= false

⇐⇒ Mod(KB) 6= ∅

to weighing alternatives d ∈ D via probabilities given KB

prob(d |KB) = conditional probability of d given KB

 Bayesian networks . . .

32 / 32

