Slides mainly from Poole & Mackworth, chap 15

Datalog based on the following assumptions

- An agent's knowledge can be usefully described in terms of *individuals* and *relations* among individuals.
- An agent's knowledge base consists of *definite* and *positive* statements.
- The environment is *static*.
- There are only a finite number of individuals of interest in the domain.

An individual can be named.

Datalog syntax

- A variable starts with upper-case letter.
- A constant starts with lower-case letter or is a sequence of digits (numeral).
- A predicate symbol starts with lower-case letter.
- A term is either a variable or a constant.
- An atomic symbol (atom) is of the form p or $p(t_1, \ldots, t_n)$ where p is a predicate symbol and t_i are terms.

Datalog syntax (ctd)

• A definite clause is either an atomic symbol (a fact) or of the form:

where a and b_i are atomic symbols.

- query is of the form $?b_1 \wedge \cdots \wedge b_m$.
- knowledge base is a set of definite clauses.

A semantics specifies the meaning of sentences in the language. An interpretation specifies:

- what objects (individuals) are in the world
- the correspondence between symbols in the computer and objects & relations in world
 - constants denote individuals
 - predicate symbols denote relations

Formal Semantics

An interpretation is a triple $I = \langle D, \phi, \pi \rangle$, where

- *D*, the domain, is a nonempty set. Elements of *D* are individuals.
- φ is a mapping that assigns to each constant an element of D. Constant c denotes individual φ(c).
- π is a mapping that assigns to each *n*-ary predicate symbol a relation: a function from D^n into {*TRUE*, *FALSE*}.

Example Interpretation

Constants: phone, pencil, telephone. Predicate Symbol: noisy (unary), left_of (binary).

- *D* = { ≫, ☎, ∞}.
- $\phi(phone) = \mathbf{a}, \ \phi(pencil) = \mathbf{a}, \ \phi(telephone) = \mathbf{a}.$
- $\pi(noisy)$: $\langle \rangle$ FALSE $\langle \mathbf{T} \rangle$ TRUE FALSE π (*left_of*): (*, 🔊) 🔀 🔀 FALSE ⟨≫, ☎⟩ TRUE TRUE יא אַ א ′ 🗖 🤇 🖏 FALSE FALSE TRUE °.) S.× FALSE °&. **^** FALSE FALSE

Important points to note

- The domain *D* can contain real objects. (e.g., a person, a room, a course). *D* can't necessarily be stored in a computer.
- π(p) specifies whether the relation denoted by the n-ary predicate symbol p is true or false for each n-tuple of individuals.
- If predicate symbol p has no arguments, then $\pi(p)$ is either *TRUE* or *FALSE*.

Truth in an interpretation

A constant c denotes in I the individual $\phi(c)$. Ground (variable-free) atom $p(t_1, \ldots, t_n)$ is

- true in interpretation / if $\pi(p)(\langle \phi(t_1), \dots, \phi(t_n) \rangle) = TRUE$ in interpretation / and
- false otherwise.

Ground clause $h \leftarrow b_1 \land \ldots \land b_m$ is false in interpretation I if h is false in I and each b_i is true in I, and is true in interpretation I otherwise.

Example Truths

In the interpretation given before, which of following are true?

 $\begin{array}{l} \textit{noisy(phone)} \\ \textit{noisy(telephone)} \\ \textit{noisy(pencil)} \\ \textit{left_of(phone, pencil)} \\ \textit{left_of(phone, telephone)} \\ \textit{noisy(phone)} \leftarrow \textit{left_of(phone, telephone)} \\ \textit{noisy(pencil)} \leftarrow \textit{left_of(phone, telephone)} \\ \textit{noisy(pencil)} \leftarrow \textit{left_of(phone, pencil)} \\ \textit{noisy(phone)} \leftarrow \textit{noisy(telephone)} \land \textit{noisy(pencil)} \end{array}$

Example Truths

In the interpretation given before, which of following are true?

noisy(phone)	true
noisy(telephone)	true
noisy(pencil)	false
<i>left_of(phone, pencil)</i>	true
<i>left_of(phone, telephone)</i>	false
$\mathit{noisy}(\mathit{phone}) \leftarrow \mathit{left_of}(\mathit{phone}, \mathit{telephone})$	true
$\mathit{noisy}(\mathit{pencil}) \leftarrow \mathit{left_of}(\mathit{phone}, \mathit{telephone})$	true
$\mathit{noisy}(\mathit{pencil}) \leftarrow \mathit{left_of}(\mathit{phone}, \mathit{pencil})$	false
$\mathit{noisy}(\mathit{phone}) \leftarrow \mathit{noisy}(\mathit{telephone}) \land \mathit{noisy}(\mathit{pencil})$	true

Models and logical consequences

- A knowledge base, *KB*, is true in interpretation *I* if and only if every clause in *KB* is true in *I*.
- A model of a set of clauses is an interpretation in which all the clauses are true.
- If KB is a set of clauses and g is a conjunction of atoms, g is a logical consequence of KB, written $KB \models g$, if g is true in every model of KB.
- That is, $KB \models g$ if there is no interpretation in which KB is true and g is false.

User's view of Semantics

- 1. Choose a task domain: intended interpretation.
- 2. Associate constants with individuals you want to name.
- 3. For each relation you want to represent, associate a predicate symbol in the language.
- 4. Tell the system clauses that are true in the intended interpretation: axiomatizing the domain.
- 5. Ask questions about the intended interpretation.
- 6. If $KB \models g$, then g must be true in the intended interpretation.

Computer's view of semantics

- The computer doesn't have access to the intended interpretation.
- All it knows is the knowledge base.
- The computer can determine if a formula is a logical consequence of KB.
- If $KB \models g$ then g must be true in the intended interpretation.
- If $KB \not\models g$ then there is a model of KB in which g is false. This could be the intended interpretation.

Semantics in the mind

↓ □ ↓14 / 32

Recall that g is a logical consequence of KB, $KB \models g$, precisely if g is true in all models of KB.

Let \vdash be a mechanical procedure for deriving a formula g from a knowledge base KB, written $KB \vdash g$.

 \vdash is sound if $KB \models g$ whenever $KB \vdash g$.

Recall that g is a logical consequence of KB, $KB \models g$, precisely if g is true in all models of KB.

Let \vdash be a mechanical procedure for deriving a formula g from a knowledge base KB, written $KB \vdash g$.

 \vdash is sound if $KB \models g$ whenever $KB \vdash g$.

 \vdash is complete if $KB \vdash g$ whenever $KB \models g$.

Recall that g is a logical consequence of KB, $KB \models g$, precisely if g is true in all models of KB.

Let \vdash be a mechanical procedure for deriving a formula g from a knowledge base KB, written $KB \vdash g$.

 \vdash is sound if $KB \models g$ whenever $KB \vdash g$.

 \vdash is complete if $KB \vdash g$ whenever $KB \models g$.

Two extreme examples:

- (1) $KB \vdash g$ for no g sound
- (2) $KB \vdash g$ for all g complete

Recall that g is a logical consequence of KB, $KB \models g$, precisely if g is true in all models of KB.

Let \vdash be a mechanical procedure for deriving a formula g from a knowledge base KB, written $KB \vdash g$.

 \vdash is sound if $KB \models g$ whenever $KB \vdash g$.

 \vdash is complete if $KB \vdash g$ whenever $KB \models g$.

Two extreme examples:

- (1) $KB \vdash g$ for no g 'say nothing' undergenerates sound
- (2) $KB \vdash g$ for all g 'say everything' overgenerates complete

Propositional KBs

Recall

i :- p,q. i :- r. p. r.

Propositional KBs

Recall

i :- p,q. i :- r. p. r.

Propositional KBs

Recall

i :- p,q. i :- r.	<pre>KB = [[i,p,q],[i,r],[p],[r]] arc([H T],N,KB) :- member([H B],KB),</pre>
р.	append(B,T,N).
r.	prove([],KB).
	<pre>prove(Node,KB) :- arc(Node,Next,KB),</pre>

Let

$$KB \vdash G \iff \text{prove}([G], KB)$$

Theorem.

(1) \vdash is sound (proved by induction) (2) \vdash is *not* complete (why?)

Logical consequences bottom-up

$$C_0 := \emptyset$$

$$C_{n+1} := \{H \mid (\text{for some } B \subseteq C_n) \text{ member}([H|B], KB)\}$$

$$C := \bigcup_{n \ge 0} C_n$$

$$= \bigcup_{n \le k} C_n \text{ where } k = \text{number of clauses in } KB$$

Logical consequences bottom-up

$$C_0 := \emptyset$$

$$C_{n+1} := \{H \mid (\text{for some } B \subseteq C_n) \text{ member}([H|B], KB)\}$$

$$C := \bigcup_{n \ge 0} C_n$$

$$= \bigcup_{n \le k} C_n \text{ where } k = \text{number of clauses in } KB$$

23 / 32

A 0-ary predicate p is interpreted by $I = \langle D, \phi, \pi \rangle$ as $\pi(p) : D^0 \to \{ true, false \}.$

Substitutions and instances

A 0-ary predicate p is interpreted by $\textit{I}=\langle \textit{D},\phi,\pi\rangle$ as

$$\pi(p): D^0 o \{ true, false \}.$$

Let K be a set of constants.

A *K*-substitution is a function from a finite set of variables to *K* — i.e. a set $\{V_1/c_1, \ldots, V_n/c_n\}$ of $c_i \in K$ and distinct variables V_i .

The application $e\theta$ of a K-substitution $\theta = \{V_1/c_1, \dots, V_n/c_n\}$ to a clause e is e with each V_i replaced by c_i

e.g. $p(Z, U, Y, a, X)\{X/b, U/a, Z/b\} = p(b, a, Y, a, b).$

A *K*-instance of *e* is $e\theta$ for some *K*-substitution θ .

Given a set B of clauses and a K-substitution θ , let

$$B\theta := \{e\theta \mid e \in B\}.$$

25 / 32

Bottom-up with substitutions

If KB has constants from some non-empty finite set K, let

$$C_{0}^{K} := \emptyset$$

$$C_{n+1}^{K} := \{H\theta \mid \theta \text{ is a } K \text{-substitution s.t. } B\theta \subseteq C_{n}^{K}$$
for some B s.t. member($[H|B], KB$)}
$$C^{K} := \bigcup_{n \ge 0} C_{n}^{K}$$

Bottom-up with substitutions

If KB has constants from some non-empty finite set K, let

$$C_{0}^{K} := \emptyset$$

$$C_{n+1}^{K} := \{H\theta \mid \theta \text{ is a } K \text{-substitution s.t. } B\theta \subseteq C_{n}^{K}$$
for some B s.t. member($[H|B], KB$)}
$$C^{K} := \bigcup_{n \ge 0} C_{n}^{K}$$

E.g. for KB = [[p(a,b)], [q(X), p(X,Y)]] and $K = \{a, b\},\$

$$C_1^K = \{p(a,b)\}\$$

 $C_2^K = \{p(a,b),q(a)\} = C^K$

27 / 32

Soundness & completeness via Herbrand

The Herbrand interpretation of a set KB of clauses with constants from a non-empty set K is the triple $I = \langle D, \phi, \pi \rangle$ where

- the domain D is the set K of constants
- ϕ is the identity function on K (each constant in K refers to itself)
- for each *n*-ary *p* and *n*-tuple $c_1 \ldots c_n$ from *K*,

$$\pi(p)(c_1 \dots c_n) = \text{ true } \iff p(c_1 \dots c_n) \in C^K$$

Soundness & completeness via Herbrand

The Herbrand interpretation of a set KB of clauses with constants from a non-empty set K is the triple $I = \langle D, \phi, \pi \rangle$ where

- the domain D is the set K of constants
- ϕ is the identity function on K (each constant in K refers to itself)
- for each *n*-ary *p* and *n*-tuple $c_1 \ldots c_n$ from *K*,

$$\pi(p)(c_1 \dots c_n) =$$
true $\iff p(c_1 \dots c_n) \in C^K$

Fact. *I* is a model of KB, and every clause true in *I* is true in every model of KB (interpreting constants in K).

Soundness & completeness via Herbrand

The Herbrand interpretation of a set KB of clauses with constants from a non-empty set K is the triple $I = \langle D, \phi, \pi \rangle$ where

- the domain D is the set K of constants
- ϕ is the identity function on K (each constant in K refers to itself)
- for each *n*-ary *p* and *n*-tuple $c_1 \ldots c_n$ from *K*,

$$\pi(p)(c_1\ldots c_n) =$$
 true $\iff p(c_1\ldots c_n) \in C^K$

Fact. *I* is a model of KB, and every clause true in *I* is true in every model of KB (interpreting constants in *K*).

Corollary. The bottom-up procedure with substitutions is sound and complete (for Datalog).

3 modes of reasoning (C.S. Peirce)

		typed functional prog \cong proof
Deduction	deduce	modus ponens \cong function app $f(a)$
Abduction	explain	choose input a from assumables
Induction	generalise/program	choose rule/function f

3 modes of reasoning (C.S. Peirce)

		typed functional prog \cong proof
Deduction	deduce	modus ponens \cong function app $f(a)$
Abduction	explain	choose input a from assumables
Induction	generalise/program	choose rule/function f

From \models as inclusion \subseteq

$$\begin{array}{rcl} {\it KB} \models g & \Longleftrightarrow & {\it Mod}({\it KB}) \subseteq {\it Mod}(g) \\ {\it KB} \mbox{ satisfiable } & \Longleftrightarrow & {\it Mod}({\it KB}) \not\models \mbox{ false} \\ & \longleftrightarrow & {\it Mod}({\it KB}) \neq \emptyset \end{array}$$

to weighing alternatives $d \in D$ via probabilities given KB

prob(d|KB) = conditional probability of d given KB

 \rightsquigarrow Bayesian networks . . .