Slides mainly from Poole & Mackworth, chap 15

Datalog based on the following assumptions

@ An agent's knowledge can be usefully described in terms of
individuals and relations among individuals.

@ An agent’s knowledge base consists of definite and positive
statements.

@ The environment is static.

@ There are only a finite number of individuals of interest in the
domain.
An individual can be named.

1/32

http://artint.info/3e/html/ArtInt3e.Ch15.html

Datalog syntax

@ A variable starts with upper-case letter.

@ A constant starts with lower-case letter or is a sequence of
digits (numeral).

@ A predicate symbol starts with lower-case letter.

@ A term is either a variable or a constant.

@ An atomic symbol (atom) is of the form p or p(ti,...,t,)

where p is a predicate symbol and t; are terms.

2/32

Datalog syntax (ctd)

@ A definite clause is either an atomic symbol (a fact) or of the

form:
2 <~ biA - Abpy

head body

where a and b; are atomic symbols.
@ query is of the form ?by A --- A bp,.

@ knowledge base is a set of definite clauses.

3/32

Semantics: General ldea

A semantics specifies the meaning of sentences in the language.
An interpretation specifies:
e what objects (individuals) are in the world

@ the correspondence between symbols in the computer and
objects & relations in world

» constants denote individuals
» predicate symbols denote relations

4/32

Formal Semantics

An interpretation is a triple | = (D, ¢,), where

@ D, the domain, is a nonempty set. Elements of D are
individuals.

@ ¢ is a mapping that assigns to each constant an element of
D. Constant ¢ denotes individual ¢(c).

@ 7 is a mapping that assigns to each n-ary predicate symbol a
relation: a function from D" into { TRUE, FALSE}.

5/32

Example Interpretation

Constants: phone, pencil, telephone.
Predicate Symbol: noisy (unary), left_of (binary).

e D= {g><, ﬁ’ %}
o ¢(phone) = T, ¢(pencil) = N, ¢(telephone) = B.

o m(noisy): | (¥<) FaLse | (B) TrUE| (D) FALSE |
w(/eft of):
(=<,<) FaLse | (<,T) TRUE | (°<,N) TRUE
(B, 3<) FaLse | (B, T) rase | (B, N) TRUE
(X, 5<) FaLsE | (N, B) ratse | (N, D) FaLseE

6/32

Important points to note

@ The domain D can contain real objects. (e.g., a person, a
room, a course). D can't necessarily be stored in a computer.
e 7(p) specifies whether the relation denoted by the n-ary

predicate symbol p is true or false for each n-tuple of
individuals.

o If predicate symbol p has no arguments, then 7(p) is either
TRUE Or FALSE.

7/32

Truth in an interpretation

A constant ¢ denotes in | the individual ¢(c).
Ground (variable-free) atom p(ty,...,t,) is

@ true in interpretation / if w(p)(<¢(t1) ,d(tn))) = TRUE in
interpretation / and

@ false otherwise.

Ground clause h < by A ... A by, is false in interpretation [if h is
false in I and each b; is true in /, and is true in interpretation /
otherwise.

8/32

Example Truths

In the interpretation given before, which of following are true?

noisy(phone)

noisy (telephone)

noisy(pencil)

left _of (phone, pencil)

left _of (phone, telephone)

noisy(phone) < left_of (phone, telephone)
noisy(pencil) < left_of (phone, telephone)
noisy(pencil) < left_of (phone, pencil)
noisy(phone) < noisy(telephone) A noisy(pencil)

9/32

Example Truths

In the interpretation given before, which of following are true?

noisy(phone) true
noisy (telephone) true
noisy(pencil) false
left _of (phone, pencil) true
left _of (phone, telephone) false
noisy(phone) < left_of (phone, telephone) true
noisy(pencil) < left_of (phone, telephone) true
noisy(pencil) < left_of (phone, pencil) false
noisy(phone) < noisy(telephone) A noisy(pencil) true

10/32

Models and logical consequences

@ A knowledge base, KB, is true in interpretation / if and only if
every clause in KB is true in /.

@ A model of a set of clauses is an interpretation in which all
the clauses are true.

e If KB is a set of clauses and g is a conjunction of atoms, g is
a logical consequence of KB, written KB |= g, if g is true in
every model of KB.

e That is, KB |= g if there is no interpretation in which KB is
true and g is false.

11/32

User’'s view of Semantics

1. Choose a task domain: intended interpretation.
2. Associate constants with individuals you want to name.

3. For each relation you want to represent, associate a predicate
symbol in the language.

4. Tell the system clauses that are true in the intended
interpretation: axiomatizing the domain.

5. Ask questions about the intended interpretation.

6. If KB |= g, then g must be true in the intended interpretation.

12/32

Computer'’s view of semantics

@ The computer doesn't have access to the intended
interpretation.

@ All it knows is the knowledge base.

@ The computer can determine if a formula is a logical
consequence of KB.

e If KB |= g then g must be true in the intended interpretation.

e If KB [~ g then there is a model of KB in which g is false.
This could be the intended interpretation.

13/32

Semantics in the mind

in(kim,r123).

part_of(ri23,cs_building).

in(X,Y) «
part_of(Z,Y) A
in(X,z2).

I

!
* in(kim,cs_building)

14/32

Soundness and completeness

Recall that g is a logical consequence of KB, KB = g, precisely if
g is true in all models of KB.

Let F be a mechanical procedure for deriving a formula g from a
knowledge base KB, written KB I g.

F is sound if KB |= g whenever KB +- g.

15/32

Soundness and completeness

Recall that g is a logical consequence of KB, KB = g, precisely if
g is true in all models of KB.

Let F be a mechanical procedure for deriving a formula g from a
knowledge base KB, written KB I g.

F is sound if KB |= g whenever KB +- g.

F is complete if KB - g whenever KB = g.

16 /32

Soundness and completeness

Recall that g is a logical consequence of KB, KB = g, precisely if
g is true in all models of KB.

Let F be a mechanical procedure for deriving a formula g from a
knowledge base KB, written KB I g.

F is sound if KB |= g whenever KB +- g.

F is complete if KB - g whenever KB = g.

Two extreme examples:

(1) KBFg fornog
sound

(2) KBFg forallg
complete

17/32

Soundness and completeness

Recall that g is a logical consequence of KB, KB = g, precisely if
g is true in all models of KB.

Let F be a mechanical procedure for deriving a formula g from a
knowledge base KB, written KB I g.

F is sound if KB |= g whenever KB +- g.

F is complete if KB - g whenever KB = g.

Two extreme examples:

(1) KBFg fornog ‘say nothing’ undergenerates
sound

(2) KBF g forall g ‘say everything' overgenerates
complete

18/32

Propositional KBs

Recall

:— pPsq.
T r.

R D e

19/32

Propositional KBs

Recall
i:- p,q. KB = [[i,p,q],[i,r],[p],[r]]
i-r. arc([H|T],N,KB) :- member([H|B],KB),
p- append (B, T,N).
r. prove([],KB).
prove(Node,KB) :- arc(Node,Next,KB),
prove (Next,KB) .

20/32

Propositional KBs

Recall
i:- p.q. KB = [[i,p,q],[i,r],[p], [r]]
i-r. arc([H|T],N,KB) :- member([H|B],KB),
p- append (B, T,N).
r. prove([],KB).
prove(Node,KB) :- arc(Node,Next,KB),
prove (Next,KB) .
Let
KB+ G <= prove([G],KB)
Theorem.

(1) Fis sound (proved by induction)
(2) Fis not complete (why?)

21/32

Logical consequences bottom-up

C =0
Ch+1 = {H | (for some B C C,) member([H|B], KB)}
c:={JG
n>0

= U C, where k = number of clauses in KB
n<k

22/32

Logical consequences bottom-up

C =0
Ch+1 = {H | (for some B C C,) member([H|B], KB)}
c:={JG
n>0

= U C, where k = number of clauses in KB
n<k

= p,q. KB = [[i,p,ql,[i,r],[p], [r]]
- r. arc([H|T],N,KB) :- member([HI|B],KB),
append (B, T,N) .

R D R e

G ={p,r}
G ={p,r,i}=C,forn>2

23/32

A O-ary predicate p is interpreted by | = (D, ¢, 7) as

7(p) : D° — {true,false}.

24/32

Substitutions and instances
A O-ary predicate p is interpreted by | = (D, ¢, 7) as

7(p) : D° — {true,false}.

Let K be a set of constants.

A K-substitution is a function from a finite set of variables to K —
ie. aset {Vi/c1,..., Vn/cn} of ¢; € K and distinct variables V;.

The application ef of a K-substitution 8 = {V4i/c1,..., Vn/cn} to
a clause e is e with each V; replaced by ¢;

eg. p(Z,U,Y,a,X){X/b,U/a,Z/b} = p(b,a,Y,a,b).
A K-instance of e is efl for some K-substitution 6.

Given a set B of clauses and a K-substitution 8, let
BO = {ebd | e € B}.

25 /32

Bottom-up with substitutions

If KB has constants from some non-empty finite set K, let

=10
Chiy = {HO | 0 is a K-substitution s.t. BO C CX

for some B s.t. member([H|B], KB)}
o= Jck

n>0

26 /32

Bottom-up with substitutions

If KB has constants from some non-empty finite set K, let

=0
Chiy = {HO | 0 is a K-substitution s.t. BO C CX
for some B s.t. member([H|B], KB)}

o= Jck

n>0
E.g. for KB =[[p(a,b)], [q(X),pX,¥)]1] and K = {a, b},

¢ = {p(a,b)}
& = {p(a,b),q(a)} = C¥

27 /32

Soundness & completeness via Herbrand

The Herbrand interpretation of a set KB of clauses with constants
from a non-empty set K is the triple | = (D, ¢, m) where

@ the domain D is the set K of constants

@ ¢ is the identity function on K (each constant in K refers to
itself)

e for each n-ary p and n-tuple ¢1 ... c, from K,

m(p)(cL...cn) = true <= p(ci...cy) € CK

28/32

https://en.wikipedia.org/wiki/Jacques_Herbrand

Soundness & completeness via Herbrand

The Herbrand interpretation of a set KB of clauses with constants
from a non-empty set K is the triple | = (D, ¢, m) where

@ the domain D is the set K of constants

@ ¢ is the identity function on K (each constant in K refers to
itself)

e for each n-ary p and n-tuple ¢1 ... c, from K,
m(p)(cL...cn) = true <= p(ci...cy) € CK

Fact. / is a model of KB, and every clause true in [is true in
every model of KB (interpreting constants in K).

29/32

https://en.wikipedia.org/wiki/Jacques_Herbrand

Soundness & completeness via Herbrand

The Herbrand interpretation of a set KB of clauses with constants
from a non-empty set K is the triple | = (D, ¢, m) where

@ the domain D is the set K of constants

@ ¢ is the identity function on K (each constant in K refers to
itself)
e for each n-ary p and n-tuple ¢1 ... c, from K,

m(p)(cL...cn) = true <= p(ci...cy) € CK

Fact. / is a model of KB, and every clause true in [is true in
every model of KB (interpreting constants in K).

Corollary. The bottom-up procedure with substitutions is sound
and complete (for Datalog).

30/32

https://en.wikipedia.org/wiki/Jacques_Herbrand

3 modes of reasoning (C.S. Peirce)

‘ ‘ typed functional prog = proof

Deduction deduce modus ponens 2 function app f(a)
Abduction explain choose input a from assumables
Induction | generalise/program | choose rule/function f

31/32

3 modes of reasoning (C.S. Peirce)

‘ ‘ typed functional prog = proof

Deduction deduce modus ponens 2 function app f(a)
Abduction explain choose input a from assumables
Induction | generalise/program | choose rule/function f

From |= as inclusion C

KB g <= Mod(KB)C Mod(g)
KB satisfiable <= Mod(KB) |~ false
<= Mod(KB) # 0

to weighing alternatives d € D via probabilities given KB
prob(d|KB) = conditional probability of d given KB

~ Bayesian networks ...

32/32

