Datalog based on the following assumptions

- An agent’s knowledge can be usefully described in terms of *individuals* and *relations* among individuals.
- An agent’s knowledge base consists of *definite* and *positive* statements.
- The environment is *static*.
- There are only a finite number of individuals of interest in the domain.
 An individual can be named.
Datalog syntax

- A **variable** starts with upper-case letter.
- A **constant** starts with lower-case letter or is a sequence of digits (numeral).
- A **predicate symbol** starts with lower-case letter.
- A **term** is either a variable or a constant.
- An **atomic symbol** (atom) is of the form p or $p(t_1, \ldots, t_n)$ where p is a predicate symbol and t_i are terms.
A definite clause is either an atomic symbol (a fact) or of the form:

\[a \leftarrow b_1 \land \cdots \land b_m \]

where \(a \) and \(b_i \) are atomic symbols.

- query is of the form \(?b_1 \land \cdots \land b_m\).
- knowledge base is a set of definite clauses.
A **semantics** specifies the meaning of sentences in the language. An **interpretation** specifies:

- what objects (individuals) are in the world
- the correspondence between symbols in the computer and objects & relations in world
 - constants denote individuals
 - predicate symbols denote relations
Formal Semantics

An interpretation is a triple $I = \langle D, \phi, \pi \rangle$, where

- D, the **domain**, is a nonempty set. Elements of D are **individuals**.

- ϕ is a mapping that assigns to each constant an element of D. Constant c denotes individual $\phi(c)$.

- π is a mapping that assigns to each n-ary predicate symbol a relation: a function from D^n into $\{\text{TRUE, FALSE}\}$.
Example Interpretation

Constants: phone, pencil, telephone.
Predicat Symbol: noisy (unary), left_of (binary).

- $D = \{ \text{phone}, \text{pencil}, \text{telephone} \}$.
- $\phi(\text{phone}) = \text{phone}, \phi(\text{pencil}) = \text{pencil}, \phi(\text{telephone}) = \text{telephone}.$
- $\pi(\text{noisy})$:
 \[\begin{array}{c|c}
 \langle \text{phone} \rangle & \text{FALSE} \\
 \langle \text{pencil} \rangle & \text{TRUE} \\
 \langle \text{telephone} \rangle & \text{FALSE}
 \end{array} \]

- $\pi(\text{left_of})$:
 \[\begin{array}{c|c|c}
 \langle \text{phone}, \text{pencil} \rangle & \text{FALSE} & \langle \text{pencil}, \text{phone} \rangle & \text{TRUE} \\
 \langle \text{pencil}, \text{phone} \rangle & \text{FALSE} & \langle \text{phone}, \text{pencil} \rangle & \text{TRUE} \\
 \langle \text{telephone}, \text{pencil} \rangle & \text{FALSE} & \langle \text{pencil}, \text{telephone} \rangle & \text{TRUE} \\
 \langle \text{pencil}, \text{telephone} \rangle & \text{FALSE} & \langle \text{telephone}, \text{pencil} \rangle & \text{TRUE} \\
 \langle \text{telephone}, \text{telephone} \rangle & \text{FALSE} & \langle \text{pencil}, \text{pencil} \rangle & \text{FALSE} \\
 \langle \text{pencil}, \text{pencil} \rangle & \text{FALSE} & \langle \text{telephone}, \text{telephone} \rangle & \text{FALSE} \\
 \langle \text{telephone}, \text{telephone} \rangle & \text{FALSE} & \langle \text{pencil}, \text{pencil} \rangle & \text{FALSE} \\
 \langle \text{pencil}, \text{pencil} \rangle & \text{FALSE} & \langle \text{telephone}, \text{telephone} \rangle & \text{FALSE} \\
 \end{array} \]
Important points to note

- The domain D can contain real objects. (e.g., a person, a room, a course). D can’t necessarily be stored in a computer.
- $\pi(p)$ specifies whether the relation denoted by the n-ary predicate symbol p is true or false for each n-tuple of individuals.
- If predicate symbol p has no arguments, then $\pi(p)$ is either \textit{TRUE} or \textit{FALSE}.

A constant c denotes in I the individual $\phi(c)$.
Ground (variable-free) atom $p(t_1, \ldots, t_n)$ is
- **true in interpretation I** if $\pi(p)(\langle \phi(t_1), \ldots, \phi(t_n) \rangle) = \text{TRUE}$ in interpretation I and
- **false** otherwise.

Ground clause $h \leftarrow b_1 \land \ldots \land b_m$ is **false in interpretation I** if h is false in I and each b_i is true in I, and is **true in interpretation I** otherwise.
Example Truths

In the interpretation given before, which of following are true?

\[
\begin{align*}
& \text{noisy(phone)} \\
& \text{noisy(telephone)} \\
& \text{noisy(pencil)} \\
& \text{left_of(phone, pencil)} \\
& \text{left_of(phone, telephone)} \\
& \text{noisy(phone) } \leftarrow \text{left_of(phone, telephone)} \\
& \text{noisy(pencil) } \leftarrow \text{left_of(phone, telephone)} \\
& \text{noisy(pencil) } \leftarrow \text{left_of(phone, pencil)} \\
& \text{noisy(phone) } \leftarrow \text{noisy(telephone)} \land \text{noisy(pencil)}
\end{align*}
\]
Example Truths

In the interpretation given before, which of following are true?

\[
\begin{align*}
\text{noisy}(\text{phone}) & \quad \text{true} \\
\text{noisy}(\text{telephone}) & \quad \text{true} \\
\text{noisy}(\text{pencil}) & \quad \text{false} \\
\text{left}_\text{of}(\text{phone}, \text{pencil}) & \quad \text{true} \\
\text{left}_\text{of}(\text{phone}, \text{telephone}) & \quad \text{false} \\
\text{noisy}(\text{phone}) & \leftarrow \text{left}_\text{of}(\text{phone}, \text{telephone}) \quad \text{true} \\
\text{noisy}(\text{pencil}) & \leftarrow \text{left}_\text{of}(\text{phone}, \text{telephone}) \quad \text{true} \\
\text{noisy}(\text{pencil}) & \leftarrow \text{left}_\text{of}(\text{phone}, \text{pencil}) \quad \text{false} \\
\text{noisy}(\text{phone}) & \leftarrow \text{noisy}(\text{telephone}) \land \text{noisy}(\text{pencil}) \quad \text{true}
\end{align*}
\]
A knowledge base, KB, is true in interpretation I if and only if every clause in KB is true in I.

A model of a set of clauses is an interpretation in which all the clauses are true.

If KB is a set of clauses and g is a conjunction of atoms, g is a logical consequence of KB, written $KB \models g$, if g is true in every model of KB.

That is, $KB \models g$ if there is no interpretation in which KB is true and g is false.
User’s view of Semantics

1. Choose a task domain: intended interpretation.
2. Associate constants with individuals you want to name.
3. For each relation you want to represent, associate a predicate symbol in the language.
4. Tell the system clauses that are true in the intended interpretation: axiomatizing the domain.
5. Ask questions about the intended interpretation.
6. If $KB \models g$, then g must be true in the intended interpretation.
Computer’s view of semantics

- The computer doesn’t have access to the intended interpretation.
- All it knows is the knowledge base.
- The computer can determine if a formula is a logical consequence of KB.
 - If $KB \models g$ then g must be true in the intended interpretation.
 - If $KB \not\models g$ then there is a model of KB in which g is false. This could be the intended interpretation.
in(kim, r123).
part_of(r123, cs_building).
in(X, Y) ←
 part_of(Z, Y) ∧
in(X, Z).

in(kim, cs_building)
Soundness and completeness

Recall that g is a *logical consequence* of KB, $KB \models g$, precisely if g is true in all models of KB.

Let \vdash be a mechanical procedure for deriving a formula g from a knowledge base KB, written $KB \vdash g$.

\vdash is **sound** if $KB \models g$ whenever $KB \vdash g$.

\vdash is **complete** if $KB \vdash g$ whenever $KB \models g$.
Soundness and completeness

Recall that g is a \textit{logical consequence} of KB, $KB \models g$, precisely if g is true in all models of KB.

Let \vdash be a mechanical procedure for deriving a formula g from a knowledge base KB, written $KB \vdash g$.

\vdash is \textbf{sound} if $KB \models g$ whenever $KB \vdash g$.

\vdash is \textbf{complete} if $KB \vdash g$ whenever $KB \models g$.

Two extreme examples:

(1) $KB \vdash g$ for no g sound

(2) $KB \vdash g$ for all g complete
Propositional KBs

Recall

\[
i :- p, q.
\]

\[
i :- r.
\]

\[
p.
\]

\[
r.
\]
Propositional KBs

Recall

\[i :- p, q. \]
\[i :- r. \]
\[p. \]
\[r. \]

\[KB = [[i, p, q], [i, r], [p], [r]] \]

\[\text{arc}([H|T], N, KB) :- \text{member}([H|B], KB), \]
\[\text{append}(B, T, N). \]

\[\text{prove}([], KB). \]
\[\text{prove}(\text{Node}, KB) :- \text{arc}(\text{Node}, \text{Next}, KB), \]
\[\text{prove}(\text{Next}, KB). \]
Propositional KBs

Recall

\[i \leftarrow p, q. \]
\[i \leftarrow r. \]
\[p. \]
\[r. \]

\[\text{KB} = [[i,p,q],[i,r],[p],[r]] \]
\[\text{arc}([H|T], N, \text{KB}) \leftarrow \text{member}([H|B], \text{KB}), \]
\[\text{append}(B, T, N). \]
\[\text{prove}([], \text{KB}). \]
\[\text{prove}(\text{Node}, \text{KB}) \leftarrow \text{arc}(\text{Node}, \text{Next}, \text{KB}), \]
\[\text{prove}(\text{Next}, \text{KB}). \]

Let

\[\text{KB} \vdash G \iff \text{prove}([G], \text{KB}) \]

Theorem.

(1) \(\vdash \) is sound (proved by induction)
(2) \(\vdash \) is not complete (why?)
Logical consequences bottom-up

\[C_0 := \emptyset \]
\[C_{n+1} := \{ H \mid (\text{for some } B \subseteq C_n) \ \text{member}([H|B], KB) \} \]
\[C := \bigcup_{n \geq 0} C_n \]
\[= \bigcup_{n \leq k} C_n \quad \text{where } k = \text{number of clauses in } KB \]
Logical consequences bottom-up

\[C_0 := \emptyset \]
\[C_{n+1} := \{ H \mid \text{(for some } B \subseteq C_n) \text{ member}([H|B], KB) \} \]
\[C := \bigcup_{n \geq 0} C_n \]
\[= \bigcup_{n \leq k} C_n \quad \text{where } k = \text{number of clauses in } KB \]

\[i :- p, q. \quad \text{KB = } [[i,p,q],[i,r],[p],[r]] \]
\[i :- r. \quad \text{arc}([H|T], N, KB) :- \text{member}([H|B], KB), \]
\[p. \quad \text{append}(B, T, N). \]
\[r. \]
\[C_1 = \{p, r\} \]
\[C_2 = \{p, r, i\} = C_n \text{ for } n \geq 2 \]
A 0-ary predicate p is interpreted by $I = \langle D, \phi, \pi \rangle$ as

$$\pi(p) : D^0 \rightarrow \{\text{true}, \text{false}\}.$$
Substitutions and instances

A 0-ary predicate p is interpreted by $I = \langle D, \phi, \pi \rangle$ as

$$\pi(p) : D^0 \rightarrow \{\text{true, false}\}.$$

Let K be a set of constants.

A K-substitution is a function from a finite set of variables to K — i.e. a set $\{V_1/c_1, \ldots, V_n/c_n\}$ of $c_i \in K$ and distinct variables V_i.

The application $e\theta$ of a K-substitution $\theta = \{V_1/c_1, \ldots, V_n/c_n\}$ to a clause e is e with each V_i replaced by c_i.

e.g. $p(Z, U, Y, a, X)\{X/b, U/a, Z/b\} = p(b, a, Y, a, b)$.

A K-instance of e is $e\theta$ for some K-substitution θ.

Given a set B of clauses and a K-substitution θ, let

$$B\theta := \{e\theta \mid e \in B\}.$$
Bottom-up with substitutions

If KB has constants from some non-empty finite set K, let

$$C^K_0 := \emptyset$$

$$C^K_{n+1} := \{ H\theta \mid \theta \text{ is a } K\text{-substitution s.t. } B\theta \subseteq C_n \text{ for some } B \text{ s.t. } \text{member}([H|B], KB) \}$$

$$C^K := \bigcup_{n \geq 0} C^K_n$$
Bottom-up with substitutions

If KB has constants from some non-empty finite set K, let

$$C_0^K := \emptyset$$

$$C_{n+1}^K := \{ H\theta \mid \theta \text{ is a } K\text{-substitution s.t. } B\theta \subseteq C_n \text{ for some } B \text{ s.t. } \text{member([}H|B\text{], }KB\text{)} \}$$

$$C^K := \bigcup_{n\geq 0} C_n^K$$

E.g. for $KB = [[p(a, b)], [q(X), p(X, Y)]]$ and $K = \{a, b\}$,

$$C_1^K = \{p(a, b)\}$$

$$C_2^K = \{p(a, b), q(a)\} = C^K$$
Soundness & completeness via Herbrand

The Herbrand interpretation of a set KB of clauses with constants from a non-empty set K is the triple $I = \langle D, \phi, \pi \rangle$ where

- the domain D is the set K of constants
- ϕ is the identity function on K (each constant in K refers to itself)
- for each n-ary p and n-tuple $c_1 \ldots c_n$ from K,

$$
\pi(p)(c_1 \ldots c_n) = \text{true} \iff p(c_1 \ldots c_n) \in C^K
$$

Fact. I is a model of KB, and every clause true in I is true in every model of KB (interpreting constants in K).

Corollary. The bottom-up procedure with substitutions is sound and complete (for Datalog).
Soundness & completeness via Herbrand

The Herbrand interpretation of a set \(KB \) of clauses with constants from a non-empty set \(K \) is the triple \(I = \langle D, \phi, \pi \rangle \) where

- the domain \(D \) is the set \(K \) of constants
- \(\phi \) is the identity function on \(K \) (each constant in \(K \) refers to itself)
- for each \(n \)-ary \(p \) and \(n \)-tuple \(c_1 \ldots c_n \) from \(K \),

\[
\pi(p)(c_1 \ldots c_n) = \text{true} \iff p(c_1 \ldots c_n) \in C^K
\]

Fact. \(I \) is a model of \(KB \), and every clause true in \(I \) is true in every model of \(KB \) (interpreting constants in \(K \)).
Soundness & completeness via Herbrand

The Herbrand interpretation of a set KB of clauses with constants from a non-empty set K is the triple $I = \langle D, \phi, \pi \rangle$ where

- the domain D is the set K of constants
- ϕ is the identity function on K (each constant in K refers to itself)
- for each n-ary p and n-tuple $c_1 \ldots c_n$ from K,

$$\pi(p)(c_1 \ldots c_n) = \text{true} \iff p(c_1 \ldots c_n) \in C^K$$

Fact. I is a model of KB, and every clause true in I is true in every model of KB (interpreting constants in K).

Corollary. The bottom-up procedure with substitutions is sound and complete (for Datalog).