Datalog based on the following assumptions

- An agent’s knowledge can be usefully described in terms of individuals and relations among individuals.
- An agent’s knowledge base consists of definite and positive statements.
- The environment is static.
- There are only a finite number of individuals of interest in the domain.
 An individual can be named.
Datalog syntax

- A variable starts with upper-case letter.
- A constant starts with lower-case letter or is a sequence of digits (numeral).
- A predicate symbol starts with lower-case letter.
- A term is either a variable or a constant.
- An atomic symbol (atom) is of the form p or $p(t_1, \ldots, t_n)$ where p is a predicate symbol and t_i are terms.
A definite clause is either an atomic symbol (a fact) or of the form:

\[a \leftarrow b_1 \land \cdots \land b_m \]

where \(a \) and \(b_i \) are atomic symbols.

- query is of the form \(?b_1 \land \cdots \land b_m\).
- knowledge base is a set of definite clauses.
A **semantics** specifies the meaning of sentences in the language. An **interpretation** specifies:

- what objects (individuals) are in the world
- the correspondence between symbols in the computer and objects & relations in world
 - constants denote individuals
 - predicate symbols denote relations
An interpretation is a triple $I = \langle D, \phi, \pi \rangle$, where

- D, the domain, is a nonempty set. Elements of D are individuals.

- ϕ is a mapping that assigns to each constant an element of D. Constant c denotes individual $\phi(c)$.

- π is a mapping that assigns to each n-ary predicate symbol a relation: a function from D^n into \{TRUE, FALSE\}.
Example Interpretation

Constants: \textit{phone}, \textit{pencil}, \textit{telephone}.
Predicate Symbol: \textit{noisy} (unary), \textit{left_of} (binary).

\begin{itemize}
\item \(D = \{ \text{\textbullet}, \text{\textbullet}, \text{\textbullet} \} \).
\item \(\phi(\text{\textbullet}) = \text{\textbullet}, \phi(\text{\textbullet}) = \text{\textbullet}, \phi(\text{\textbullet}) = \text{\textbullet} \).
\item \(\pi(\text{\textbullet}) = \langle \text{\textbullet} \rangle \text{ FALSE} \langle \text{\textbullet} \rangle \text{ TRUE} \langle \text{\textbullet} \rangle \text{ FALSE} \).
\item \(\pi(\text{\textbullet}) = \langle \text{\textbullet}, \text{\textbullet} \rangle \text{ FALSE} \langle \text{\textbullet}, \text{\textbullet} \rangle \text{ TRUE} \langle \text{\textbullet}, \text{\textbullet} \rangle \text{ TRUE} \).
\item \(\pi(\text{\textbullet}) = \langle \text{\textbullet}, \text{\textbullet} \rangle \text{ FALSE} \langle \text{\textbullet}, \text{\textbullet} \rangle \text{ TRUE} \langle \text{\textbullet}, \text{\textbullet} \rangle \text{ TRUE} \).
\end{itemize}
Important points to note

- The domain D can contain real objects. (e.g., a person, a room, a course). D can’t necessarily be stored in a computer.
- $\pi(p)$ specifies whether the relation denoted by the n-ary predicate symbol p is true or false for each n-tuple of individuals.
- If predicate symbol p has no arguments, then $\pi(p)$ is either TRUE or FALSE.
Truth in an interpretation

A constant c denotes in I the individual $\phi(c)$. Ground (variable-free) atom $p(t_1, \ldots, t_n)$ is

- true in interpretation I if $\pi(p)(⟨\phi(t_1), \ldots, \phi(t_n)⟩) = TRUE$ in interpretation I and
- false otherwise.

Ground clause $h ← b_1 ∧ \ldots ∧ b_m$ is false in interpretation I if h is false in I and each b_i is true in I, and is true in interpretation I otherwise.
Example Truths

In the interpretation given before, which of following are true?

\[
\begin{align*}
\text{noisy(phone)} \\
\text{noisy(telephone)} \\
\text{noisy(pencil)} \\
\text{left_of(phone, pencil)} \\
\text{left_of(phone, telephone)} \\
\text{noisy(phone) } \leftarrow \text{left_of(phone, telephone)} \\
\text{noisy(pencil) } \leftarrow \text{left_of(phone, telephone)} \\
\text{noisy(pencil) } \leftarrow \text{left_of(phone, pencil)} \\
\text{noisy(phone) } \leftarrow \text{noisy(telephone)} \land \text{noisy(pencil)}
\end{align*}
\]
Example Truths

In the interpretation given before, which of following are true?

\[
\begin{align*}
\text{noisy(phone)} & \quad \text{true} \\
\text{noisy(telephone)} & \quad \text{true} \\
\text{noisy(pencil)} & \quad \text{false} \\
\text{left_of(phone, pencil)} & \quad \text{true} \\
\text{left_of(phone, telephone)} & \quad \text{false} \\
\text{noisy(phone)} & \leftarrow \text{left_of(phone, telephone)} \quad \text{true} \\
\text{noisy(pencil)} & \leftarrow \text{left_of(phone, telephone)} \quad \text{true} \\
\text{noisy(pencil)} & \leftarrow \text{left_of(phone, pencil)} \quad \text{false} \\
\text{noisy(phone)} & \leftarrow \text{noisy(telephone)} \land \text{noisy(pencil)} \quad \text{true}
\end{align*}
\]
A knowledge base, KB, is true in interpretation I if and only if every clause in KB is true in I.

A model of a set of clauses is an interpretation in which all the clauses are true.

If KB is a set of clauses and g is a conjunction of atoms, g is a logical consequence of KB, written $KB \models g$, if g is true in every model of KB.

That is, $KB \models g$ if there is no interpretation in which KB is true and g is false.
User’s view of Semantics

1. Choose a task domain: intended interpretation.
2. Associate constants with individuals you want to name.
3. For each relation you want to represent, associate a predicate symbol in the language.
4. Tell the system clauses that are true in the intended interpretation: axiomatizing the domain.
5. Ask questions about the intended interpretation.
6. If $KB \models g$, then g must be true in the intended interpretation.
The computer doesn’t have access to the intended interpretation.

All it knows is the knowledge base.

The computer can determine if a formula is a logical consequence of KB.

If $KB \models g$ then g must be true in the intended interpretation.

If $KB \not\models g$ then there is a model of KB in which g is false. This could be the intended interpretation.
Semantics in the mind

\begin{align*}
in(kim,r123). \\
part_of(r123,cs_building). \\
in(X,Y) & \leftarrow \\
part_of(Z,Y) \land \\
in(X,Z).
\end{align*}
Soundness and completeness

Recall that g is a logical consequence of KB, $KB \models g$, precisely if g is true in all models of KB.

Let \vdash be a mechanical procedure for deriving a formula g from a knowledge base KB, written $KB \vdash g$.

\vdash is sound if $KB \models g$ whenever $KB \vdash g$.

\vdash is complete if $KB \vdash g$ whenever $KB \models g$.
Soundness and completeness

Recall that \(g \) is a logical consequence of \(KB \), \(KB \models g \), precisely if \(g \) is true in all models of \(KB \).

Let \(\vdash \) be a mechanical procedure for deriving a formula \(g \) from a knowledge base \(KB \), written \(KB \vdash g \).

\(\vdash \) is sound if \(KB \models g \) whenever \(KB \vdash g \).

\(\vdash \) is complete if \(KB \vdash g \) whenever \(KB \models g \).

Two extreme examples:

1. \(KB \vdash g \) for no \(g \) sound
2. \(KB \vdash g \) for all \(g \) complete
Propositional KBs

Recall

\[i \leftarrow p, q. \]
\[i \leftarrow r. \]
\[p. \]
\[r. \]
Propositional KBs

Recall

\begin{align*}
i & : \neg \neg q. \\
i & : \neg r. \\
p & . \\
r & .
\end{align*}

\[KB = [[[i,p,q],[i,r],[p]],[r]] \]

\begin{align*}
\text{arc}([H|T],N,KB) & : \neg \text{member}([H|B],KB), \\
& \neg \text{append}(B,T,N). \\
\text{prove}([]) & . \\
\text{prove}(Node,KB) & : \neg \text{arc}(Node,Next,KB), \\
& \text{prove}(Next,KB).
\end{align*}

Let \[KB \vdash G \iff \text{prove}([G],KB) \]

Theorem

(1) \[\vdash \] is sound (proved by induction)

(2) \[\vdash \] is not complete (why?)
Propositional KBs

Recall

\[i :- p, q. \]
\[i :- r. \]
\[KB = [[i, p, q], [i, r], [p], [r]] \]
\[arc([H|T], N, KB) :- member([H|B], KB), append(B, T, N). \]
\[p. \]
\[r. \]
\[prove([], KB). \]
\[prove(Node, KB) :- arc(Node, Next, KB), prove(Next, KB). \]

Let

\[KB \vdash G \iff prove([G], KB) \]

Theorem.

(1) \(\vdash \) is sound (proved by induction)

(2) \(\vdash \) is *not* complete (why?)
Logical consequences bottom-up

\[C_0 := \emptyset \]
\[C_{n+1} := \{ H \mid \text{(for some } B \subseteq C_n) \text{ member}([H|B], KB) \} \]
\[C := \bigcup_{n \geq 0} C_n \]
\[= \bigcup_{n \leq k} C_n \quad \text{where } k = \text{number of clauses in } KB \]
Logical consequences bottom-up

\[
C_0 := \emptyset
\]

\[
C_{n+1} := \{H \mid (\text{for some } B \subseteq C_n) \text{ member}([H|B], KB)\}
\]

\[
C := \bigcup_{n \geq 0} C_n
\]

\[
= \bigcup_{n \leq k} C_n \quad \text{where } k = \text{number of clauses in } KB
\]

\[
i :- p,q. \quad \text{KB} = [[i,p,q],[i,r],[p],[r]]
\]

\[
i :- r. \quad \text{arc}([H|T],N,KB) :- \text{member}([H|B],KB),\quad \text{append}(B,T,N).
\]

\[
p. \quad C_1 = \{p,r\}
\]

\[
r. \quad C_2 = \{p,r,i\} = C_n \text{ for } n \geq 2
\]
A 0-ary predicate p is interpreted by $I = \langle D, \phi, \pi \rangle$ as

$$\pi(p) : D^0 \rightarrow \{\text{true}, \text{false}\}.$$
Substitutions and instances

A 0-ary predicate p is interpreted by $I = \langle D, \phi, \pi \rangle$ as

$$\pi(p) : D^0 \rightarrow \{\text{true, false}\}.$$

Let K be a set of constants.

A K-substitution is a function from a finite set of variables to K — i.e. a set $\{V_1/c_1, \ldots, V_n/c_n\}$ of $c_i \in K$ and distinct variables V_i.

The application $e\theta$ of a K-substitution $\theta = \{V_1/c_1, \ldots, V_n/c_n\}$ to a clause e is e with each V_i replaced by c_i

- e.g. $p(Z, U, Y, a, X)\{X/b, U/a, Z/b\} = p(b, a, Y, a, b)$.

A K-instance of e is $e\theta$ for some K-substitution θ.

Given a set B of clauses and a K-substitution θ, let

$$B\theta := \{e\theta \mid e \in B\}.$$
Bottom-up with substitutions

If \(KB \) has constants from some non-empty finite set \(K \), let

\[
C^K_0 := \emptyset
\]

\[
C^K_{n+1} := \{ H\theta \mid \theta \text{ is a } K\text{-substitution s.t. } B\theta \subseteq C_n \text{ for some } B \text{ s.t. member([H|B], } KB) \}
\]

\[
C^K := \bigcup_{n \geq 0} C^K_n
\]
Bottom-up with substitutions

If KB has constants from some non-empty finite set K, let

\[
C^K_n := \emptyset
\]

\[
C^K_{n+1} := \{ H\theta \mid \theta \text{ is a } K\text{-substitution s.t. } B\theta \subseteq C_n \text{ for some } B \text{ s.t. member}([H|B], KB) \}
\]

\[
C^K := \bigcup_{n \geq 0} C^K_n
\]

E.g. for $KB = [[p(a, b)], [q(X), p(X, Y)]]$ and $K = \{a, b\}$,

\[
C^K_1 = \{p(a, b)\}
\]

\[
C^K_2 = \{p(a, b), q(a)\} = C^K
\]
Soundness & completeness via Herbrand

The Herbrand interpretation of a set KB of clauses with constants from a non-empty set K is the triple $I = \langle D, \phi, \pi \rangle$ where

- the domain D is the set K of constants
- ϕ is the identity function on K (each constant in K refers to itself)
- for each n-ary p and n-tuple $c_1 \ldots c_n$ from K,

$$\pi(p)(c_1 \ldots c_n) = \text{true} \iff p(c_1 \ldots c_n) \in C^K$$
The Herbrand interpretation of a set KB of clauses with constants from a non-empty set K is the triple $I = \langle D, \phi, \pi \rangle$ where

- the domain D is the set K of constants
- ϕ is the identity function on K (each constant in K refers to itself)
- for each n-ary p and n-tuple $c_1 \ldots c_n$ from K,

\[\pi(p)(c_1 \ldots c_n) = \text{true} \iff p(c_1 \ldots c_n) \in C^K \]

Fact. I is a model of KB, and every clause true in I is true in every model of KB (interpreting constants in K).
Soundness & completeness via Herbrand

The Herbrand interpretation of a set KB of clauses with constants from a non-empty set K is the triple $I = \langle D, \phi, \pi \rangle$ where

- the domain D is the set K of constants
- ϕ is the identity function on K (each constant in K refers to itself)
- for each n-ary p and n-tuple $c_1 \ldots c_n$ from K,

$$\pi(p)(c_1 \ldots c_n) = \text{true} \iff p(c_1 \ldots c_n) \in C^K$$

Fact. I is a model of KB, and every clause true in I is true in every model of KB (interpreting constants in K).

Corollary. The bottom-up procedure with substitutions is sound and complete (for Datalog).