Datalog based on the following assumptions

- An agent's knowledge can be usefully described in terms of *individuals* and *relations* among individuals.
- An agent's knowledge base consists of *definite* and *positive* statements.
- The environment is *static*.
- There are only a finite number of individuals of interest in the domain.
 An individual can be named.
Datalog syntax

- A **variable** starts with upper-case letter.
- A **constant** starts with lower-case letter or is a sequence of digits (numeral).
- A **predicate symbol** starts with lower-case letter.
- A **term** is either a variable or a constant.
- An **atomic symbol** (atom) is of the form p or $p(t_1, \ldots, t_n)$ where p is a predicate symbol and t_i are terms.
A **definite clause** is either an atomic symbol (a fact) or of the form:

\[
a \leftarrow b_1 \land \cdots \land b_m
\]

where \(a\) and \(b_i\) are atomic symbols.

- **query** is of the form \(?b_1 \land \cdots \land b_m\).
- **knowledge base** is a set of definite clauses.
Semantics: General Idea

A **semantics** specifies the meaning of sentences in the language. An **interpretation** specifies:

- what objects (individuals) are in the world
- the correspondence between symbols in the computer and objects & relations in world
 - constants denote individuals
 - predicate symbols denote relations
An interpretation is a triple $I = \langle D, \phi, \pi \rangle$, where

- D, the domain, is a nonempty set. Elements of D are individuals.
- ϕ is a mapping that assigns to each constant an element of D. Constant c denotes individual $\phi(c)$.
- π is a mapping that assigns to each n-ary predicate symbol a relation: a function from D^n into $\{TRUE, FALSE\}$.

Example Interpretation

Constants: phone, pencil, telephone.
Predicate Symbol: noisy (unary), left_of (binary).

- $D = \{\text{phone}, \text{pencil}, \text{telephone}\}$.
- $\phi(\text{phone}) = \text{phone}, \phi(\text{pencil}) = \text{pencil}, \phi(\text{telephone}) = \text{telephone}$.
- $\pi(\text{noisy})$:
<table>
<thead>
<tr>
<th></th>
<th>FALSE</th>
<th>TRUE</th>
<th>FALSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>phone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pencil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>telephone</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- $\pi(\text{left_of})$:
<table>
<thead>
<tr>
<th></th>
<th>FALSE</th>
<th>TRUE</th>
<th>TRUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>phone, pencil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pencil, phone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pencil, pencil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pencil, telephone</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Important points to note

- The domain D can contain real objects. (e.g., a person, a room, a course). D can’t necessarily be stored in a computer.

- $\pi(p)$ specifies whether the relation denoted by the n-ary predicate symbol p is true or false for each n-tuple of individuals.

- If predicate symbol p has no arguments, then $\pi(p)$ is either $TRUE$ or $FALSE$.
A constant c denotes in I the individual $\phi(c)$. Ground (variable-free) atom $p(t_1, \ldots, t_n)$ is

- **true in interpretation I** if $\pi(p)(\langle \phi(t_1), \ldots, \phi(t_n) \rangle) = \text{TRUE}$ in interpretation I and
- **false** otherwise.

Ground clause $h \leftarrow b_1 \land \ldots \land b_m$ is **false in interpretation I** if h is false in I and each b_i is true in I, and is **true in interpretation I** otherwise.
Example Truths

In the interpretation given before, which of following are true?

\[\text{true}\]

\[\text{true}\]

\[\text{false}\]

\[\text{true}\]

\[\text{false}\]

\[\text{true}\]
Example Truths

In the interpretation given before, which of the following are true?

\[
\begin{align*}
\text{noisy}(\text{phone}) & \quad \text{true} \\
\text{noisy}(\text{telephone}) & \quad \text{true} \\
\text{noisy}(\text{pencil}) & \quad \text{false} \\
\text{left_of}(\text{phone}, \text{pencil}) & \quad \text{true} \\
\text{left_of}(\text{phone}, \text{telephone}) & \quad \text{false} \\
\text{noisy}(\text{phone}) & \leftarrow \text{left_of}(\text{phone}, \text{telephone}) \quad \text{true} \\
\text{noisy}(\text{pencil}) & \leftarrow \text{left_of}(\text{phone}, \text{telephone}) \quad \text{true} \\
\text{noisy}(\text{pencil}) & \leftarrow \text{left_of}(\text{phone}, \text{pencil}) \quad \text{false} \\
\text{noisy}(\text{phone}) & \leftarrow \text{noisy}(\text{telephone}) \land \text{noisy}(\text{pencil}) \quad \text{true}
\end{align*}
\]
A knowledge base, KB, is true in interpretation I if and only if every clause in KB is true in I.

A model of a set of clauses is an interpretation in which all the clauses are true.

If KB is a set of clauses and g is a conjunction of atoms, g is a logical consequence of KB, written $KB \models g$, if g is true in every model of KB.

That is, $KB \models g$ if there is no interpretation in which KB is true and g is false.
User’s view of Semantics

1. Choose a task domain: intended interpretation.
2. Associate constants with individuals you want to name.
3. For each relation you want to represent, associate a predicate symbol in the language.
4. Tell the system clauses that are true in the intended interpretation: axiomatizing the domain.
5. Ask questions about the intended interpretation.
6. If $KB \models g$, then g must be true in the intended interpretation.
Computer’s view of semantics

- The computer doesn’t have access to the intended interpretation.
- All it knows is the knowledge base.
- The computer can determine if a formula is a logical consequence of \(KB \).
- If \(KB \models g \) then \(g \) must be true in the intended interpretation.
- If \(KB \not\models g \) then there is a model of \(KB \) in which \(g \) is false. This could be the intended interpretation.
in(kim,r123).
part_of(r123,cs_building).
in(X,Y) ←
 part_of(Z,Y) ∧
in(X,Z).

in(kim,cs_building)
Soundness and completeness

Recall that g is a *logical consequence of* KB, $KB \models g$, precisely if g is true in all models of KB.

Let \vdash be a mechanical procedure for deriving a formula g from a knowledge base KB, written $KB \vdash g$.

\vdash is *sound* if $KB \models g$ whenever $KB \vdash g$.
Soundness and completeness

Recall that g is a *logical consequence* of KB, $KB \models g$, precisely if g is true in all models of KB.

Let \vdash be a mechanical procedure for deriving a formula g from a knowledge base KB, written $KB \vdash g$.

\vdash is **sound** if $KB \models g$ whenever $KB \vdash g$.

\vdash is **complete** if $KB \vdash g$ whenever $KB \models g$.

Two extreme examples:

(1) $KB \vdash g$ for no g ‘say nothing’ undergenerates sound

(2) $KB \vdash g$ for all g ‘say everything’ overgenerates complete
Soundness and completeness

Recall that g is a *logical consequence of* KB, $KB \models g$, precisely if g is true in all models of KB.

Let \vdash be a mechanical procedure for deriving a formula g from a knowledge base KB, written $KB \vdash g$.

\vdash is **sound** if $KB \models g$ whenever $KB \vdash g$.

\vdash is **complete** if $KB \vdash g$ whenever $KB \models g$.

Two extreme examples:

1. $KB \vdash g$ for no g for **no sound**
2. $KB \vdash g$ for all g for **complete**
Soundness and completeness

Recall that g is a \textit{logical consequence of} KB, $KB \models g$, precisely if g is true in all models of KB.

Let \vdash be a mechanical procedure for deriving a formula g from a knowledge base KB, written $KB \vdash g$.

\vdash is \textbf{sound} if $KB \models g$ whenever $KB \vdash g$.

\vdash is \textbf{complete} if $KB \vdash g$ whenever $KB \models g$.

Two extreme examples:

(1) $KB \vdash g$ for no g \hspace{1cm} ‘say nothing’ undergenerates sound

(2) $KB \vdash g$ for all g \hspace{1cm} ‘say everything’ overgenerates complete
Propositional KBs

Recall

\[
\begin{align*}
i & : - p, q. \\
i & : - r. \\
p. \\
r. \\
\end{align*}
\]
Propositional KBs

Recall

\[i : p, q. \]
\[i : r. \]

\[KB = \{ [i, p, q], [i, r], [p], [r] \} \]

\[arc([H|T], N, KB) :- member([H|B], KB), append(B, T, N). \]

\[prove([], KB). \]
\[prove(Node, KB) :- arc(Node, Next, KB), prove(Next, KB). \]
Propositional KBs

Recall

\[i :- p, q. \]
\[i :- r. \]
\[KB = [[i, p, q], [i, r], [p], [r]] \]
\[arc([H|T], N, KB) :- member([H|B], KB), \]
\[p. \]
\[r. \]
\[append(B, T, N). \]
\[prove([], KB). \]
\[prove(Node, KB) :- arc(Node, Next, KB), \]
\[prove(Next, KB). \]

Let

\[KB \vdash G \iff prove([G], KB) \]

Theorem.

(1) \(\vdash \) is sound (proved by induction)
(2) \(\vdash \) is *not* complete (why?)
Logical consequences bottom-up

\[
C_0 := \emptyset
\]

\[
C_{n+1} := \{H \mid \text{(for some } B \subseteq C_n\text{) member([H|B], KB)}\}
\]

\[
C := \bigcup_{n \geq 0} C_n = \bigcup_{n \leq k} C_n \quad \text{where } k = \text{number of clauses in } KB
\]
Logical consequences bottom-up

\[C_0 := \emptyset \]
\[C_{n+1} := \{ H \mid \text{(for some } B \subseteq C_n) \text{ member}([H|B],KB)\} \]
\[C := \bigcup_{n \geq 0} C_n \]
\[= \bigcup_{n \leq k} C_n \quad \text{where } k = \text{number of clauses in } KB \]

\[
i :- p, q. \quad \text{KB} = [[i,p,q],[i,r],[p],[r]]
\]
\[
i :- r. \quad \text{arc}([H|T],N,\text{KB}) :- \text{member}([H|B],\text{KB}),\]
\[
p. \quad \text{append}(B,T,N).
\]
\[
r. \quad C_1 = \{ p, r \}
\]
\[
C_2 = \{ p, r, i \} = C_n \text{ for } n \geq 2 \]
A 0-ary predicate p is interpreted by $I = \langle D, \phi, \pi \rangle$ as

$$\pi(p) : D^0 \rightarrow \{\text{true},\text{false}\}.$$
Substitutions and instances

A 0-ary predicate p is interpreted by $I = \langle D, \phi, \pi \rangle$ as

$$\pi(p) : D^0 \to \{\text{true}, \text{false}\}.$$

Let K be a set of constants.

A K-substitution is a function from a finite set of variables to K — i.e. a set $\{V_1/c_1, \ldots, V_n/c_n\}$ of $c_i \in K$ and distinct variables V_i.

The application $e\theta$ of a K-substitution $\theta = \{V_1/c_1, \ldots, V_n/c_n\}$ to a clause e is e with each V_i replaced by c_i

- e.g. $p(Z, U, Y, a, X)\{X/b, U/a, Z/b\} = p(b, a, Y, a, b)$.

A K-instance of e is $e\theta$ for some K-substitution θ.

Given a set B of clauses and a K-substitution θ, let

$$B\theta := \{e\theta \mid e \in B\}.$$
Bottom-up with substitutions

If KB has constants from some non-empty finite set K, let

$$C^K_0 := \emptyset$$

$$C^K_{n+1} := \{ H\theta \mid \theta \text{ is a } K\text{-substitution s.t. } B\theta \subseteq C^K_n \text{ for some } B \text{ s.t. member}([H|B], KB) \}$$

$$C^K := \bigcup_{n \geq 0} C^K_n$$
Bottom-up with substitutions

If KB has constants from some non-empty finite set K, let

$$C^K_0 := \emptyset$$

$$C^K_{n+1} := \{ H\theta \mid \theta \text{ is a } K\text{-substitution s.t. } B\theta \subseteq C^K_n \text{ for some } B \text{ s.t. member([H|B], KB)} \}$$

$$C^K := \bigcup_{n \geq 0} C^K_n$$

E.g. for $KB = [[p(a,b)],[q(x),p(x,Y)]]$ and $K = \{a,b\}$,

$$C^K_1 = \{p(a,b)\}$$

$$C^K_2 = \{p(a,b), q(a)\} = C^K$$
The **Herbrand interpretation** of a set KB of clauses with constants from a non-empty set K is the triple $I = \langle D, \phi, \pi \rangle$ where

- the domain D is the set K of constants
- ϕ is the identity function on K (each constant in K refers to itself)
- for each n-ary p and n-tuple $c_1 \ldots c_n$ from K,

$$\pi(p)(c_1 \ldots c_n) = \text{true} \iff p(c_1 \ldots c_n) \in C^K$$
Soundness & completeness via Herbrand

The Herbrand interpretation of a set KB of clauses with constants from a non-empty set K is the triple $I = \langle D, \phi, \pi \rangle$ where

- the domain D is the set K of constants
- ϕ is the identity function on K (each constant in K refers to itself)
- for each n-ary p and n-tuple $c_1 \ldots c_n$ from K,

$$\pi(p)(c_1 \ldots c_n) = \text{true} \iff p(c_1 \ldots c_n) \in C^K$$

Fact. I is a model of KB, and every clause true in I is true in every model of KB (interpreting constants in K).
Soundness & completeness via Herbrand

The Herbrand interpretation of a set KB of clauses with constants from a non-empty set K is the triple $I = \langle D, \phi, \pi \rangle$ where

- the domain D is the set K of constants
- ϕ is the identity function on K (each constant in K refers to itself)
- for each n-ary p and n-tuple $c_1 \ldots c_n$ from K,

$$\pi(p)(c_1 \ldots c_n) = \text{true} \iff p(c_1 \ldots c_n) \in C^K$$

Fact. I is a model of KB, and every clause true in I is true in every model of KB (interpreting constants in K).

Corollary. The bottom-up procedure with substitutions is sound and complete (for Datalog).