Slides mainly from Poole \& Mackworth, chap 15

Datalog based on the following assumptions

- An agent's knowledge can be usefully described in terms of individuals and relations among individuals.
- An agent's knowledge base consists of definite and positive statements.
- The environment is static.
- There are only a finite number of individuals of interest in the domain.
An individual can be named.

Datalog syntax

- A variable starts with upper-case letter.
- A constant starts with lower-case letter or is a sequence of digits (numeral).
- A predicate symbol starts with lower-case letter.
- A term is either a variable or a constant.
- An atomic symbol (atom) is of the form p or $p\left(t_{1}, \ldots, t_{n}\right)$ where p is a predicate symbol and t_{i} are terms.

Datalog syntax (ctd)

- A definite clause is either an atomic symbol (a fact) or of the form:

where a and b_{i} are atomic symbols.
- query is of the form ? $b_{1} \wedge \cdots \wedge b_{m}$.
- knowledge base is a set of definite clauses.

Semantics: General Idea

A semantics specifies the meaning of sentences in the language. An interpretation specifies:

- what objects (individuals) are in the world
- the correspondence between symbols in the computer and objects \& relations in world
- constants denote individuals
- predicate symbols denote relations

Formal Semantics

An interpretation is a triple $I=\langle D, \phi, \pi\rangle$, where

- D, the domain, is a nonempty set. Elements of D are individuals.
- ϕ is a mapping that assigns to each constant an element of D. Constant c denotes individual $\phi(c)$.
- π is a mapping that assigns to each n-ary predicate symbol a relation: a function from D^{n} into $\{T R U E, F A L S E\}$.

Example Interpretation

Constants: phone, pencil, telephone.
Predicate Symbol: noisy (unary), left_of (binary).

- $D=\{s<, \mathbf{0}, 0\}$.
- $\phi($ phone $)=\mathbf{\mathbf { 0 }}, \phi($ pencil $)=\phi($ telephone $)=\mathbf{0}$.
- π (noisy): | $\langle\delta<\rangle$ | FALSE | $\langle\mathbf{\sigma}\rangle$ | TRUE |
| :--- | :--- | :--- | :--- |$\langle\rangle\rangle$ FALSE π (left_of):

$\langle s<, s<\rangle$	FALSE	$\left\langle{ }^{\circ}<\mathbf{a}, \mathbf{3}\right\rangle$	true	$\left\langle\delta<2\right.$, ${ }^{\text {c }}$,	true
	FALSE	$\langle\mathbf{\square}, \mathbf{\square}\rangle$	FALSE	< $\mathbf{0}, 0\rangle$	true
$\langle\otimes, 8<\rangle$	FALSE	$\left\langle\right.$, $\left.{ }^{\text {a }}\right\rangle$	FALSE	< \otimes, ${ }^{\text {¢ }}$	FALSE

Important points to note

- The domain D can contain real objects. (e.g., a person, a room, a course). D can't necessarily be stored in a computer.
- $\pi(p)$ specifies whether the relation denoted by the n-ary predicate symbol p is true or false for each n-tuple of individuals.
- If predicate symbol p has no arguments, then $\pi(p)$ is either tRUE or FALSE.

Truth in an interpretation

A constant c denotes in $/$ the individual $\phi(c)$.
Ground (variable-free) atom $p\left(t_{1}, \ldots, t_{n}\right)$ is

- true in interpretation I if $\pi(p)\left(\left\langle\phi\left(t_{1}\right), \ldots, \phi\left(t_{n}\right)\right\rangle\right)=$ true in interpretation I and
- false otherwise.

Ground clause $h \leftarrow b_{1} \wedge \ldots \wedge b_{m}$ is false in interpretation / if h is false in I and each b_{i} is true in I, and is true in interpretation I otherwise.

Example Truths

In the interpretation given before, which of following are true?

```
noisy(phone)
noisy(telephone)
noisy(pencil)
left_of(phone, pencil)
left_of(phone, telephone)
noisy(phone) \leftarrowleft_of(phone, telephone)
noisy (pencil) }\leftarrow\mathrm{ left_of(phone, telephone)
noisy(pencil)}\leftarrow left_of(phone, pencil
noisy(phone) \leftarrow noisy(telephone) ^ noisy(pencil)
```


Example Truths

In the interpretation given before, which of following are true?

noisy $($ phone $)$	true
noisy $($ telephone $)$	true
noisy $($ pencil $)$	false
left_of $($ phone, pencil $)$	true
left_of $($ phone, telephone $)$	false
noisy $($ phone $) \leftarrow$ left_of $($ phone, telephone $)$	true
noisy $($ pencil $) \leftarrow$ left_of $($ phone, telephone $)$	true
noisy $($ pencil $) \leftarrow$ left_of $($ phone, pencil $)$	false
noisy $($ phone $) \leftarrow$ noisy $($ telephone $) \wedge$ noisy $($ pencil $)$	true

Models and logical consequences

- A knowledge base, $K B$, is true in interpretation I if and only if every clause in $K B$ is true in I.
- A model of a set of clauses is an interpretation in which all the clauses are true.
- If $K B$ is a set of clauses and g is a conjunction of atoms, g is a logical consequence of $K B$, written $K B \models g$, if g is true in every model of $K B$.
- That is, $K B \models g$ if there is no interpretation in which $K B$ is true and g is false.

User's view of Semantics

1. Choose a task domain: intended interpretation.
2. Associate constants with individuals you want to name.
3. For each relation you want to represent, associate a predicate symbol in the language.
4. Tell the system clauses that are true in the intended interpretation: axiomatizing the domain.
5. Ask questions about the intended interpretation.

6 . If $K B \models g$, then g must be true in the intended interpretation.

Computer's view of semantics

- The computer doesn't have access to the intended interpretation.
- All it knows is the knowledge base.
- The computer can determine if a formula is a logical consequence of KB .
- If $K B \neq g$ then g must be true in the intended interpretation.
- If $K B \not \vDash g$ then there is a model of $K B$ in which g is false. This could be the intended interpretation.

Semantics in the mind

Soundness and completeness

Recall that g is a logical consequence of $K B, K B \models g$, precisely if g is true in all models of $K B$.

Let \vdash be a mechanical procedure for deriving a formula g from a knowledge base $K B$, written $K B \vdash g$.
\vdash is sound if $K B \models g$ whenever $K B \vdash g$.

Soundness and completeness

Recall that g is a logical consequence of $K B, K B \models g$, precisely if g is true in all models of $K B$.

Let \vdash be a mechanical procedure for deriving a formula g from a knowledge base $K B$, written $K B \vdash g$.
\vdash is sound if $K B \models g$ whenever $K B \vdash g$.
\vdash is complete if $K B \vdash g$ whenever $K B \models g$.

Soundness and completeness

Recall that g is a logical consequence of $K B, K B \models g$, precisely if g is true in all models of $K B$.

Let \vdash be a mechanical procedure for deriving a formula g from a knowledge base $K B$, written $K B \vdash g$.
\vdash is sound if $K B \models g$ whenever $K B \vdash g$.
\vdash is complete if $K B \vdash g$ whenever $K B \models g$.

Two extreme examples:
(1) $K B \vdash g$ for no g sound
(2) $K B \vdash g$ for all g complete

Soundness and completeness

Recall that g is a logical consequence of $K B, K B \models g$, precisely if g is true in all models of $K B$.

Let \vdash be a mechanical procedure for deriving a formula g from a knowledge base $K B$, written $K B \vdash g$.
\vdash is sound if $K B \models g$ whenever $K B \vdash g$.
\vdash is complete if $K B \vdash g$ whenever $K B \models g$.

Two extreme examples:
(1) $K B \vdash g$ for no $g \quad$ 'say nothing' undergenerates sound
(2) $K B \vdash g$ for all $g \quad$ 'say everything' overgenerates complete

Propositional KBs

Recall

$$
\begin{aligned}
& \mathrm{i}:-\mathrm{p}, \mathrm{q} . \\
& \mathrm{i}:-\mathrm{r} . \\
& \mathrm{p} . \\
& \mathrm{r} .
\end{aligned}
$$

Propositional KBs

Recall

$$
\begin{aligned}
& \text { i : }-\mathrm{p}, \mathrm{q} . \\
& \text { i }:-\mathrm{r} . \\
& \text { p. } \\
& \text { r. }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{KB}=[[\mathrm{i}, \mathrm{p}, \mathrm{q}],[\mathrm{i}, \mathrm{r}],[\mathrm{p}],[\mathrm{r}]] \\
& \operatorname{arc}([\mathrm{H} \mid \mathrm{T}], \mathrm{N}, \mathrm{~KB})::- \\
& \operatorname{member}([\mathrm{H} \mid \mathrm{B}], \mathrm{KB}), \\
& \operatorname{append}(\mathrm{B}, \mathrm{~T}, \mathrm{~N}) . \\
& \operatorname{prove}([], \mathrm{KB}) . \\
& \operatorname{prove(Node,KB):-} \operatorname{arc}(\text { Node,Next,KB), } \\
& \operatorname{prove(Next,KB).}
\end{aligned}
$$

Propositional KBs

Recall

| $\begin{aligned} & \text { i : }-\mathrm{p}, \mathrm{q} . \\ & \text { i }:-\mathrm{r} . \\ & \text { p. } \\ & \text { r. } \end{aligned}$ | ```KB = [[i,p,q],[i,r],[p],[r]] arc([H\|T],N,KB) :- member([H|B],KB) append(B,T,N). prove([],KB). prove(Node,KB) :- arc(Node,Next,KB) prove(Next,KB).``` |
| :---: | :---: |

Let

$$
K B \vdash G \Longleftrightarrow \operatorname{prove}([\mathrm{G}], \mathrm{KB})
$$

Theorem.
(1) \vdash is sound (proved by induction)
(2) \vdash is not complete (why?)

Logical consequences bottom-up

$$
\begin{aligned}
C_{0} & :=\emptyset \\
C_{n+1} & :=\left\{H \mid\left(\text { for some } B \subseteq C_{n}\right) \operatorname{member}([H \mid B], K B)\right\} \\
C & :=\bigcup_{n \geq 0} C_{n} \\
& =\bigcup_{n \leq k} C_{n} \quad \text { where } k=\text { number of clauses in } K B
\end{aligned}
$$

Logical consequences bottom-up

$$
\begin{aligned}
C_{0} & :=\emptyset \\
C_{n+1} & :=\left\{H \mid\left(\text { for some } B \subseteq C_{n}\right) \text { member }([H \mid B], K B)\right\} \\
C & :=\bigcup_{n \geq 0} C_{n} \\
& =\bigcup_{n \leq k} C_{n} \quad \text { where } k=\text { number of clauses in } K B
\end{aligned}
$$

$$
\begin{aligned}
& \text { i }:- \text { p, q. } \\
& \text { i }:-r . \\
& \text { p. } \\
& \text { r. }
\end{aligned}
$$

$$
K B=[[i, p, q],[i, r],[p],[r]]
$$

$$
\operatorname{arc}([\mathrm{H} \mid \mathrm{T}], \mathrm{N}, \mathrm{~KB}):- \text { member }([\mathrm{H} \mid \mathrm{B}], \mathrm{KB}),
$$

$$
\text { append }(\mathrm{B}, \mathrm{~T}, \mathrm{~N})
$$

$$
\begin{aligned}
& C_{1}=\{p, r\} \\
& C_{2}=\{p, r, i\}=C_{n} \text { for } n \geq 2
\end{aligned}
$$

A 0 -ary predicate p is interpreted by $I=\langle D, \phi, \pi\rangle$ as

$$
\pi(p): D^{0} \rightarrow\{\text { true,false }\}
$$

Substitutions and instances

A 0 -ary predicate p is interpreted by $I=\langle D, \phi, \pi\rangle$ as

$$
\pi(p): D^{0} \rightarrow\{\text { true,false }\}
$$

Let K be a set of constants.
A K-substitution is a function from a finite set of variables to K i.e. a set $\left\{V_{1} / c_{1}, \ldots, V_{n} / c_{n}\right\}$ of $c_{i} \in K$ and distinct variables V_{i}.

The application e θ of a K-substitution $\theta=\left\{V_{1} / c_{1}, \ldots, V_{n} / c_{n}\right\}$ to a clause e is e with each V_{i} replaced by c_{i}

$$
\text { e.g. } p(Z, U, Y, a, X)\{X / b, U / a, Z / b\}=p(b, a, Y, a, b)
$$

A K-instance of e is $e \theta$ for some K-substitution θ.
Given a set B of clauses and a K-substitution θ, let

$$
B \theta:=\{e \theta \mid e \in B\} .
$$

Bottom-up with substitutions

If $K B$ has constants from some non-empty finite set K, let

$$
\begin{aligned}
C_{0}^{K} & :=\emptyset \\
C_{n+1}^{K} & :=\left\{H \theta \mid \theta \text { is a } K \text {-substitution s.t. } B \theta \subseteq C_{n}^{K}\right. \\
C^{K} & :=\bigcup_{n \geq 0} C_{n}^{K}
\end{aligned}
$$

Bottom-up with substitutions

If $K B$ has constants from some non-empty finite set K, let

$$
\begin{aligned}
C_{0}^{K} & :=\emptyset \\
C_{n+1}^{K} & :=\left\{H \theta \mid \theta \text { is a } K \text {-substitution s.t. } B \theta \subseteq C_{n}^{K}\right. \\
C^{K} & :=\bigcup_{n \geq 0} C_{n}^{K}
\end{aligned}
$$

E.g. for $K B=[[p(a, b)],[q(X), p(X, Y)]]$ and $K=\{a, b\}$,

$$
\begin{aligned}
& C_{1}^{K}=\{\mathrm{p}(\mathrm{a}, \mathrm{~b})\} \\
& C_{2}^{K}=\{\mathrm{p}(\mathrm{a}, \mathrm{~b}), \mathrm{q}(\mathrm{a})\}=C^{K}
\end{aligned}
$$

Soundness \& completeness via Herbrand

The Herbrand interpretation of a set $K B$ of clauses with constants from a non-empty set K is the triple $I=\langle D, \phi, \pi\rangle$ where

- the domain D is the set K of constants
- ϕ is the identity function on K (each constant in K refers to itself)
- for each n-ary p and n-tuple $c_{1} \ldots c_{n}$ from K,

$$
\pi(p)\left(c_{1} \ldots c_{n}\right)=\text { true } \Longleftrightarrow p\left(c_{1} \ldots c_{n}\right) \in C^{K}
$$

Soundness \& completeness via Herbrand

The Herbrand interpretation of a set $K B$ of clauses with constants from a non-empty set K is the triple $I=\langle D, \phi, \pi\rangle$ where

- the domain D is the set K of constants
- ϕ is the identity function on K (each constant in K refers to itself)
- for each n-ary p and n-tuple $c_{1} \ldots c_{n}$ from K,

$$
\pi(p)\left(c_{1} \ldots c_{n}\right)=\text { true } \Longleftrightarrow p\left(c_{1} \ldots c_{n}\right) \in C^{K}
$$

Fact. I is a model of $K B$, and every clause true in I is true in every model of $K B$ (interpreting constants in K).

Soundness \& completeness via Herbrand

The Herbrand interpretation of a set $K B$ of clauses with constants from a non-empty set K is the triple $I=\langle D, \phi, \pi\rangle$ where

- the domain D is the set K of constants
- ϕ is the identity function on K (each constant in K refers to itself)
- for each n-ary p and n-tuple $c_{1} \ldots c_{n}$ from K,

$$
\pi(p)\left(c_{1} \ldots c_{n}\right)=\text { true } \Longleftrightarrow p\left(c_{1} \ldots c_{n}\right) \in C^{K}
$$

Fact. I is a model of $K B$, and every clause true in I is true in every model of $K B$ (interpreting constants in K).

Corollary. The bottom-up procedure with substitutions is sound and complete (for Datalog).

3 modes of reasoning (C.S. Peirce)

		typed functional prog \cong proof
Deduction	deduce	modus ponens \cong function app $f(a)$
Abduction	explain	choose input a from assumables
Induction	generalise/program	choose rule/function f

3 modes of reasoning (C.S. Peirce)

		typed functional prog \cong proof
Deduction	deduce	modus ponens \cong function app $f(a)$
Abduction	explain	choose input a from assumables
Induction	generalise/program	choose rule/function f

From \models as inclusion \subseteq

$$
\begin{aligned}
K B \models g & \Longleftrightarrow \operatorname{Mod}(K B) \subseteq \operatorname{Mod}(g) \\
K B \text { satisfiable } & \Longleftrightarrow \operatorname{Mod}(K B) \not \models \text { false } \\
& \Longleftrightarrow \operatorname{Mod}(K B) \neq \emptyset
\end{aligned}
$$

to weighing alternatives $d \in D$ via probabilities given $K B$

$$
\operatorname{prob}(d \mid K B)=\text { conditional probability of } d \text { given } K B
$$

\rightsquigarrow Bayesian networks ...

