Datalog based on the following assumptions

- An agent's knowledge can be usefully described in terms of individuals and relations among individuals.
- An agent's knowledge base consists of definite and positive statements.
- The environment is static.
- There are only a finite number of individuals of interest in the domain.
 An individual can be named.
Datalog syntax

- A variable starts with upper-case letter.
- A constant starts with lower-case letter or is a sequence of digits (numeral).
- A predicate symbol starts with lower-case letter.
- A term is either a variable or a constant.
- An atomic symbol (atom) is of the form \(p \) or \(p(t_1, \ldots, t_n) \) where \(p \) is a predicate symbol and \(t_i \) are terms.
A definite clause is either an atomic symbol (a fact) or of the form:

\[
\begin{align*}
\text{head} & \quad \leftarrow \quad \text{body} \\
\text{a} & \quad \leftarrow \quad b_1 \land \cdots \land b_m \\
\end{align*}
\]

where \(a\) and \(b_i\) are atomic symbols.

- query is of the form \(?b_1 \land \cdots \land b_m\).
- knowledge base is a set of definite clauses.
A **semantics** specifies the meaning of sentences in the language. An **interpretation** specifies:

- what objects (individuals) are in the world
- the correspondence between symbols in the computer and objects & relations in world
 - constants denote individuals
 - predicate symbols denote relations
Formal Semantics

An interpretation is a triple $I = \langle D, \phi, \pi \rangle$, where

- D, the domain, is a nonempty set. Elements of D are individuals.

- ϕ is a mapping that assigns to each constant an element of D. Constant c denotes individual $\phi(c)$.

- π is a mapping that assigns to each n-ary predicate symbol a relation: a function from D^n into $\{TRUE, FALSE\}$.
Example Interpretation

Constants: *phone*, *pencil*, *telephone*.
Predicate Symbol: *noisy* (unary), *left_of* (binary).

- $D = \{ \triangleleft, \text{ophone}, \text{pencil}, \text{telephone} \}$.
- $\phi(\text{phone}) = \text{ophone}$, $\phi(\text{pencil}) = \text{pencil}$, $\phi(\text{telephone}) = \text{telephone}$.
- $\pi(\text{noisy}): \begin{array}{ccc} \langle \triangleleft \rangle & \text{FALSE} & \langle \text{ophone} \rangle & \text{TRUE} & \langle \text{pencil} \rangle & \text{FALSE} \end{array}$
- $\pi(\text{left_of}): \begin{array}{ccc} \langle \triangleleft, \triangleleft \rangle & \text{FALSE} & \langle \triangleleft, \text{ophone} \rangle & \text{TRUE} & \langle \triangleleft, \text{pencil} \rangle & \text{TRUE} \\
\langle \text{ophone}, \triangleleft \rangle & \text{FALSE} & \langle \text{ophone}, \text{ophone} \rangle & \text{FALSE} & \langle \text{ophone}, \text{pencil} \rangle & \text{TRUE} \\
\langle \text{pencil}, \triangleleft \rangle & \text{FALSE} & \langle \text{pencil}, \text{ophone} \rangle & \text{FALSE} & \langle \text{pencil}, \text{pencil} \rangle & \text{FALSE} \end{array}$
Important points to note

- The domain \(D \) can contain real objects. (e.g., a person, a room, a course). \(D \) can’t necessarily be stored in a computer.
- \(\pi(p) \) specifies whether the relation denoted by the \(n \)-ary predicate symbol \(p \) is true or false for each \(n \)-tuple of individuals.
- If predicate symbol \(p \) has no arguments, then \(\pi(p) \) is either \textit{TRUE} or \textit{FALSE}.

A constant c denotes in I the individual $\phi(c)$. Ground (variable-free) atom $p(t_1, \ldots, t_n)$ is

- true in interpretation I if $\pi(p)(\langle\phi(t_1), \ldots, \phi(t_n)\rangle) = TRUE$ in interpretation I and
- false otherwise.

Ground clause $h \leftarrow b_1 \land \ldots \land b_m$ is false in interpretation I if h is false in I and each b_i is true in I, and is true in interpretation I otherwise.
Example Truths

In the interpretation given before, which of following are true?

\[
\begin{align*}
 \text{noisy(phone)} \\
 \text{noisy(telephone)} \\
 \text{noisy(pencil)} \\
 \text{left_of(phone, pencil)} \\
 \text{left_of(phone, telephone)} \\
 \text{noisy(phone) }&\iff \text{left_of(phone, telephone)} \\
 \text{noisy(pencil) }&\iff \text{left_of(phone, telephone)} \\
 \text{noisy(pencil) }&\iff \text{left_of(phone, pencil)} \\
 \text{noisy(phone) }&\iff \text{noisy(telephone)} \land \text{noisy(pencil)}
\end{align*}
\]
Example Truths

In the interpretation given before, which of following are true?

\[
\begin{align*}
\text{noisy(} \text{phone} \text{)} & \quad \text{true} \\
\text{noisy(} \text{telephone} \text{)} & \quad \text{true} \\
\text{noisy(} \text{pencil} \text{)} & \quad \text{false} \\
\text{left_of(} \text{phone, pencil} \text{)} & \quad \text{true} \\
\text{left_of(} \text{phone, telephone} \text{)} & \quad \text{false} \\
\text{noisy(} \text{phone} \text{)} & \leftarrow \text{left_of(} \text{phone, telephone} \text{)} & \quad \text{true} \\
\text{noisy(} \text{pencil} \text{)} & \leftarrow \text{left_of(} \text{phone, telephone} \text{)} & \quad \text{true} \\
\text{noisy(} \text{pencil} \text{)} & \leftarrow \text{left_of(} \text{phone, pencil} \text{)} & \quad \text{false} \\
\text{noisy(} \text{phone} \text{)} & \leftarrow \text{noisy(} \text{telephone} \text{)} \land \text{noisy(} \text{pencil} \text{)} & \quad \text{true}
\end{align*}
\]
A knowledge base, KB, is true in interpretation I if and only if every clause in KB is true in I.

A model of a set of clauses is an interpretation in which all the clauses are true.

If KB is a set of clauses and g is a conjunction of atoms, g is a logical consequence of KB, written $KB \models g$, if g is true in every model of KB.

That is, $KB \models g$ if there is no interpretation in which KB is true and g is false.
1. Choose a task domain: intended interpretation.
2. Associate constants with individuals you want to name.
3. For each relation you want to represent, associate a predicate symbol in the language.
4. Tell the system clauses that are true in the intended interpretation: axiomatizing the domain.
5. Ask questions about the intended interpretation.
6. If $KB \models g$, then g must be true in the intended interpretation.
The computer doesn’t have access to the intended interpretation.

All it knows is the knowledge base.

The computer can determine if a formula is a logical consequence of KB.

If $KB \models g$ then g must be true in the intended interpretation.

If $KB \not\models g$ then there is a model of KB in which g is false. This could be the intended interpretation.
Semantics in the mind

\[
in(kim, r123).
part_of(r123, cs_building).
in(X, Y) \leftarrow \
part_of(Z, Y) \land
in(X, Z).
\]
Soundness and completeness

Recall that g is a *logical consequence of* KB, $KB \models g$, precisely if g is true in all models of KB.

Let \vdash be a mechanical procedure for deriving a formula g from a knowledge base KB, written $KB \vdash g$.

\vdash is **sound** if $KB \models g$ whenever $KB \vdash g$.

\vdash is **complete** if $KB \vdash g$ whenever $KB \models g$.
Soundness and completeness

Recall that g is a \textit{logical consequence of} KB, $KB \models g$, precisely if g is true in all models of KB.

Let \vdash be a mechanical procedure for deriving a formula g from a knowledge base KB, written $KB \vdash g$.

\vdash is \textbf{sound} if $KB \models g$ whenever $KB \vdash g$.

\vdash is \textbf{complete} if $KB \vdash g$ whenever $KB \models g$.

Two extreme examples:

(1) \hspace{1cm} $KB \vdash g$ \hspace{1cm} for no g \hspace{1cm} sound

(2) \hspace{1cm} $KB \vdash g$ \hspace{1cm} for all g \hspace{1cm} complete
Propositional KBs

Recall

\[
\begin{array}{l}
i : - \ p, q. \\
i : - \ r. \\
p. \\
r. \\
\end{array}
\]
Propositional KBs

Recall

\[
\begin{align*}
i & : p, q. \\
i & : r. \\
p. \\
r.
\end{align*}
\]

\[KB = \{[i,p,q],[i,r],[p],[r]\}\]

\[arc([H|T],N,KB) :- member([H|B],KB), append(B,T,N).\]

\[prove([],KB).\]

\[prove(Node,KB) :- arc(Node,Next,KB), prove(Next,KB).\]
Propositional KBs

Recall

\[
i \vdash p, q.
\]
\[
i \vdash r.
\]
\[
KB = [[i,p,q],[i,r],[p],[r]]
\]
\[
arc([H|T],N,KB) :- member([H|B],KB), append(B,T,N).
\]
\[
p.
\]
\[
r.
\]
\[
\text{prove([],KB).}
\]
\[
\text{prove(Node,KB) :- arc(Node,Next,KB), prove(Next,KB).}
\]

Let

\[
KB \vdash G \iff \text{prove([G],KB)}
\]

Claim

(1) \vdash \text{is sound } \text{(proved by induction)}

(2) \vdash \text{is not complete } \text{(homework question)}
Logical consequences bottom-up

\[C_0 := \emptyset \]
\[C_{n+1} := \{ H \mid (\text{for some } B \subseteq C_n) \ \text{member}([H|B], KB) \} \]
\[C := \bigcup_{n \geq 0} C_n \]
\[= \bigcup_{n \leq k} C_n \quad \text{where } k = \text{number of clauses in } KB \]
Logical consequences bottom-up

\[C_0 := \emptyset \]
\[C_{n+1} := \{ H \mid (\text{for some } B \subseteq C_n) \text{ member } ([H|B], KB) \} \]
\[C := \bigcup_{n \geq 0} C_n \]
\[= \bigcup_{n \leq k} C_n \text{ where } k = \text{number of clauses in } KB \]

\[\begin{align*}
i &:= p,q. \\
i &:= r. \\
p. \\
r. \end{align*} \]

KB = [[[i,p,q]],[[i,r],[p]],[[r]]]

arc([H|T],N,KB) :- member([H|B],KB), append(B,T,N).

\[C_1 = \{ p,r \} \]
\[C_2 = \{ p,r,i \} = C_n \text{ for } n \geq 2 \]
A 0-ary predicate p is interpreted by $I = \langle D, \phi, \pi \rangle$ as

$$\pi(p) : D^0 \to \{\text{true, false}\}.$$
Substitutions and instances

A 0-ary predicate \(p \) is interpreted by \(I = \langle D, \phi, \pi \rangle \) as

\[\pi(p) : D^0 \rightarrow \{ \text{true, false} \}. \]

Let \(K \) be a set of constants.

A \textit{\(K \)-substitution} is a function from a finite set of variables to \(K \) — i.e. a set \(\{ V_1/c_1, \ldots, V_n/c_n \} \) of distincts variables \(V_i \) and \(c_i \in K \).

The application \(e\sigma \) of a \(K \)-substitution \(\sigma = \{ V_1/c_1, \ldots, V_n/c_n \} \) to a clause \(e \) is \(e \) with each \(V_i \) replaced by \(c_i \)

\[\text{e.g. } \ p(Z, U, Y, a, X)\{X/b, U/a, Z/b\} = p(b, a, Y, a, b). \]

A \textit{\(K \)-instance} of \(e \) is \(e\sigma \) for some \(K \)-substitution \(\sigma \).

Given a set \(B \) of clauses and a \(K \)-substitution \(\theta \), let

\[B\theta := \{ e\theta \mid e \in B \}. \]
Bottom-up with substitutions

If KB has constants from some non-empty finite set K, let

\[
C^K_0 := \emptyset
\]

\[
C^K_{n+1} := \{ H\theta \mid \theta \text{ is a } K\text{-substitution s.t. } B\theta \subseteq C_n \text{ for some } B \text{ s.t. member}([H|B], KB) \}
\]

\[
C^K := \bigcup_{n \geq 0} C^K_n
\]
Bottom-up with substitutions

If KB has constants from some non-empty finite set K, let

$$C^K_0 := \emptyset$$

$$C^K_{n+1} := \{H\theta \mid \theta \text{ is a } K\text{-substitution s.t. } B\theta \subseteq C_n \text{ for some } B \text{ s.t. member}([H|B], KB)\}$$

$$C^K := \bigcup_{n\geq 0} C^K_n$$

E.g. for $KB = [[p(a,b)], [q(X), p(X,Y)]]$ and $K = \{a, b\}$,

$$C^K_1 = \{p(a,b)\}$$

$$C^K_2 = \{p(a,b), q(a)\} = C^K$$
The Herbrand interpretation of a set KB of clauses with constants from a non-empty set K is the triple $I = \langle D, \phi, \pi \rangle$ where

- the domain D is the set K of constants
- ϕ is the identity function on K (each constant in K refers to itself)
- for each n-ary p and n-tuple $c_1 \ldots c_n$ from K,

$$\pi(p)(c_1 \ldots c_n) = \text{true} \iff p(c_1 \ldots c_n) \in C^K$$
Soundness & completeness via Herbrand

The Herbrand interpretation of a set KB of clauses with constants from a non-empty set K is the triple $I = \langle D, \phi, \pi \rangle$ where

- the domain D is the set K of constants
- ϕ is the identity function on K (each constant in K refers to itself)
- for each n-ary p and n-tuple $c_1 \ldots c_n$ from K,

$$
\pi(p)(c_1 \ldots c_n) = \text{true} \iff p(c_1 \ldots c_n) \in C^K
$$

Fact. I is a model of KB, and every clause true in I is true in every model of KB (interpreting constants in K).
Soundness & completeness via Herbrand

The **Herbrand interpretation** of a set KB of clauses with constants from a non-empty set K is the triple $I = \langle D, \phi, \pi \rangle$ where
- the domain D is the set K of constants
- ϕ is the identity function on K (each constant in K refers to itself)
- for each n-ary p and n-tuple $c_1 \ldots c_n$ from K,

$$\pi(p)(c_1 \ldots c_n) = \text{true} \iff p(c_1 \ldots c_n) \in C^K$$

Fact. I is a model of KB, and every clause true in I is true in every model of KB (interpreting constants in K).

Corollary. The bottom-up procedure with substitutions is sound and complete (for Datalog).