A language no fsm accepts

$$
\begin{aligned}
& \qquad \epsilon, a b, a a b b, a a a b b b, \ldots\} \\
& \text { context-free grammar } S \longrightarrow \epsilon \mid a S b
\end{aligned}
$$

A language no fsm accepts

$$
\{\epsilon, a b, a a b b, a a a b b b, \ldots\}
$$

$$
\text { context-free grammar } \quad S \longrightarrow \epsilon \mid a S b
$$

Add blank symbol \# and actions write, move left

A language no fsm accepts

$$
\{\epsilon, a b, a a b b, a a a b b b, \ldots\}
$$

$$
\text { context-free grammar } \quad S \longrightarrow \epsilon \mid a S b
$$

Add blank symbol \# and actions write, move left

A language no fsm accepts

$$
\{\epsilon, a b, a a b b, a a a b b b, \ldots\}
$$

context-free grammar $\quad S \longrightarrow \epsilon \mid a S b$
Add blank symbol \# and actions write, move left

A language no fsm accepts

$$
\{\epsilon, a b, a a b b, a a a b b b, \ldots\}
$$

$$
\text { context-free grammar } \quad S \longrightarrow \epsilon \mid a S b
$$

Add blank symbol \# and actions write, move left

Tm = fsm + MLeft/Write/Halt

A Turing machine $(\mathrm{Tm}) \mathrm{M}$ is a 5 -tuple
[MRight, MLeft, Write, Halt, Q0]
where

- MRight is a list of triples [Q, X, Qn] such that at state Q and seeing symbol X, M may move right, and change state to Qn
- Q0 is M's initial state

Tm = fsm + MLeft/Write/Halt

A Turing machine $(\mathrm{Tm}) \mathrm{M}$ is a 5 -tuple

> [MRight, MLeft, Write, Halt, Q0]
where

- MRight is a list of triples [Q,X,Qn] such that at state Q and seeing symbol X, M may move right, and change state to Qn
- Q0 is M's initial state
- MLeft is a list of triples [Q, X, Qn] such that at Q and seeing X, M may move left, and change state to Qn

Tm = fsm + MLeft/Write/Halt

A Turing machine $(\mathrm{Tm}) \mathrm{M}$ is a 5 -tuple

> [MRight, MLeft, Write, Halt, Q0]
where

- MRight is a list of triples [Q, $X, Q n$] such that at state Q and seeing symbol X, M may move right, and change state to Qn
- Q0 is M's initial state
- MLeft is a list of triples [Q,X,Qn] such that at Q and seeing X, M may move left, and change state to Qn
- Write is a list of 4-tuples [Q, X,Y,Qn] such that at Q and X , M may write Y, and change state to Qn without moving

Tm = fsm + MLeft/Write/Halt

A Turing machine $(\mathrm{Tm}) \mathrm{M}$ is a 5 -tuple

> [MRight, MLeft, Write, Halt, Q0]
where

- MRight is a list of triples [Q, $X, Q n$] such that at state Q and seeing symbol X, M may move right, and change state to Qn
- Q0 is M's initial state
- MLeft is a list of triples [Q,X,Qn] such that at Q and seeing X, M may move left, and change state to Qn
- Write is a list of 4-tuples $[Q, X, Y, Q n]$ such that at Q and X, M may write Y, and change state to Qn without moving
- Halt is a list of pairs $[Q, X]$ such that at Q and X, M may halt.

Tm = fsm + MLeft/Write/Halt

A Turing machine $(\mathrm{Tm}) \mathrm{M}$ is a 5 -tuple
[MRight, MLeft, Write, Halt, QO]
where

- MRight is a list of triples [Q, X, Qn] such that at state Q and seeing symbol X, M may move right, and change state to Qn
- Q0 is M's initial state
- MLeft is a list of triples [Q,X,Qn] such that at Q and seeing X, M may move left, and change state to Qn
- Write is a list of 4-tuples [Q, X,Y,Qn] such that at Q and X , M may write Y, and change state to Qn without moving
- Halt is a list of pairs $[\mathrm{Q}, \mathrm{X}]$ such that at Q and X, M may halt.
N.B. A fsm is a Tm where MLeft $=[]=$ Write, and for every pair $[\mathrm{Q}, \mathrm{X}]$ in Halt, the symbol X is \# (blank).

