Constraint Satisfaction Problem [Var, Dom, Con]

» alist Var = [Xi, ..., X,] of variables X;
» alist Dom = [Dy, ..., Dy] of finite sets D; of size s;

» a finite set Con of constraints that may or may not be
satisfied by (a node) instantiating X; with a value in D;
(search space size []7_; s;)

1/23

Constraint Satisfaction Problem [Var, Dom, Con]

» alist Var = [Xi, ..., X,] of variables X;
a list Dom = [Dy, ..., D] of finite sets D; of size s;

A\

» a finite set Con of constraints that may or may not be
satisfied by (a node) instantiating X; with a value in D;
(search space size []7_; s;)

E.g. SAT: D;={0,1}, s; =2 for search space of size 2"

2/23

Constraint Satisfaction Problem [Var, Dom, Con]

» alist Var = [Xi, ..., X,] of variables X;
» alist Dom = [Dy, ..., Dy] of finite sets D; of size s;

» a finite set Con of constraints that may or may not be
satisfied by (a node) instantiating X; with a value in D;
(search space size []7_; s;)

E.g. SAT: D;={0,1}, s; =2 for search space of size 2"

Problem: satisfy all constraints in Con, instantiating variables if
necessary/convenient

3/23

Constraint Satisfaction Problem [Var, Dom, Con]

» alist Var = [Xi, ..., X,] of variables X;
» alist Dom = [Dy, ..., Dy] of finite sets D; of size s;

» a finite set Con of constraints that may or may not be
satisfied by (a node) instantiating X; with a value in D;
(search space size []7_; s;)

E.g. SAT: D;={0,1}, s; =2 for search space of size 2"

Problem: satisfy all constraints in Con, instantiating variables if
necessary/convenient

| ?- X\=Y, X=a, Y=b.
no

4/23

Constraint Satisfaction Problem [Var, Dom, Con]

» alist Var = [Xi, ..., X,] of variables X;
» alist Dom = [Dy, ..., Dy] of finite sets D; of size s;

» a finite set Con of constraints that may or may not be
satisfied by (a node) instantiating X; with a value in D;
(search space size []7_; s;)

E.g. SAT: D;={0,1}, s; =2 for search space of size 2"

Problem: satisfy all constraints in Con, instantiating variables if
necessary/convenient

| 7- X\=Y, X=a, Y=b. | ?- X=a, Y=b, X\=Y.
no X=a,Y=>D

5/23

Order-independent unification (Martelli-Montanari)

Input: set &£ of pairs [t, t']
Output: substitution [[X1, t1],...,[Xk, tk]] unifying pairs in £

6/23

Order-independent unification (Martelli-Montanari)

Input: set &£ of pairs [t, t']
Output: substitution [[X1, t1],...,[Xk, tk]] unifying pairs in £

Simplify £ non-deterministically until no longer possible

1. [f(s1,...,sk), f(tl,...,tk)] (allowing k = 0)
— replace by pairs [s1,t1],...,[sk, tk]

2. [f(s1,...,sk), g(tl,...,tm)] where f # g or k # m
= halt with failure

3. [X, X] = delete

4. [t, X] where t is not a var = replace by [X, t]

5. [X, t] where X ¢ Var(t) and X occurs elsewhere
= apply [X, t] to all other pairs

6. [X, t] where X € Var(t) and X # t = halt with failure

7/23

Order-independent unification (Martelli-Montanari)

Input: set &£ of pairs [t, t']
Output: substitution [[X1, t1],...,[Xk, tk]] unifying pairs in £

Simplify £ non-deterministically until no longer possible
1. [f(s1,...,sk), f(tl,...,tk)] (allowing k = 0)
— replace by pairs [s1,t1],...,[sk, tk]

2. [f(s1,...,sk), g(tl,...,tm)] where f # g or k # m
= halt with failure

3. [X, X] = delete
4. [t, X] where t is not a var = replace by [X, t]

5. [X, t] where X ¢ Var(t) and X occurs elsewhere
= apply [X, t] to all other pairs

6. [X, t] where X € Var(t) and X # t = halt with failure

N.B. Prolog omits occurs check X € Var(t) in 5, 6 for speed-up

8/23

Instantiate before negating (as failure)

% \+p :- (p,!,fail); true.

p(X) = \+q(X), r(X).
q(a). q(b).
r(a). r(c).

| 7- p(X). % contra 7- p(c).

9/23

Instantiate before negating (as failure)

% \+p :- (p,!,fail); true.

p(X) = \+q(X), r(X).

q(a). q(b).
r(a). r(c).
| 7- p(X). % contra 7- p(c).

| 7- p(X). % contra ?7- p(a).

10/23

Generate-and-test

brute force: instantiate all variables before testing constraints
genTest(D1...Dn) :- node(X1...Xn,Di...Dmn),
constraint(X1...Xn).
node(X1...Xn,D1...Dn) :- member(X1,D1),...,
member (Xn,Dn) .

11/23

Generate-and-test

brute force: instantiate all variables before testing constraints
genTest(D1...Dn) :- node(X1...Xn,Di...Dmn),
constraint(X1...Xn).
node(X1...Xn,D1...Dn) :- member(X1,D1),...,
member (Xn,Dn) .

For each of the []}_; si-choices of X1...Xn such that
node(X1...Xn,D1...Dn)
(with Di of size si), assume
constraint(X1...Xn)

can be checked within a polynomial of X1...Xn.

12/23

Generate-and-test

brute force: instantiate all variables before testing constraints
genTest(D1...Dn) :- node(X1...Xn,Di...Dmn),
constraint(X1...Xn).
node(X1...Xn,D1...Dn) :- member(X1,D1),...,
member (Xn,Dn) .

For each of the []}_; si-choices of X1...Xn such that
node(X1...Xn,D1...Dn)
(with Di of size si), assume
constraint(X1...Xn)

can be checked within a polynomial of X1...Xn.

Nodes are generated in lexicographic order without regard
to constraints.

13/23

Canonical Example: Graph Coloring

+ Consider N nodes in a graph

* Assign values V;,.., V| to each of the N
nodes

* The values are taken in {R,G,B}

+ Constraints: If there is an edge between i
and j, then V; must be different of V,

14/23

Cryptarithmetic

SEND
+MORE
MONEY

Prolog code
15/23

Inferring changes

Horn-SAT by minimal changes to 00---0 (all variables 0/false)

CSAT ‘ definite clause ‘ list encoding
uVvVxVz X - U,z [x, u, 2]
uvv false - u, v. [false, u, v]

16/23

Inferring changes

Horn-SAT by minimal changes to 00---0 (all variables 0/false)

CSAT ‘ definite clause ‘ list encoding
uVvVxVz X - U,z [x, u, 2]
uvv false - u, v. [false, u, v]

For each stage i, collect the variables set at stage i to 1/true in A;

Ap =10 (all variables false)
Air1 = {x | member([x|T], KB) and all(T,A;)}
——

X -t...t, in KB {tl...tk}gA,'
check: false & A,

17/23

Inferring changes

Horn-SAT by minimal changes to 00---0 (all variables 0/false)

CSAT ‘ definite clause ‘ list encoding
uVvVxVz X - U,z [x, u, 2]
uvv false - u, v. [false, u, v]

For each stage i, collect the variables set at stage i to 1/true in A;

Ap =10 (all variables false)
Air1 = {x | member([x|T], KB) and all(T,A;)}
——

X -t...t, in KB {tl...tk}gA,'
check: false & A,

No minimal set for non-Horn x \V y (or xor).

18/23

Instantiate one variable at a time
allow node to map X; to ?, raising search space size from

n n
Hs,- to H(s,- + 1) from adding ? to D;
i=1 i=1
PAY-OFF: search tree of depth n and branching factor max; s;
with start node instantiating no variable, and
an arc instantiating least uninstantiated variable

19/23

Instantiate one variable at a time
allow node to map X; to ?, raising search space size from

n n
Hs,- to H(s,- + 1) from adding ? to D;
i=1 i=1
PAY-OFF: search tree of depth n and branching factor max; s;
with start node instantiating no variable, and
an arc instantiating least uninstantiated variable

Eg. n=2, D;=D,={a, b}

(X1 =a,X; =7| | Xq = b, X =7

Xi=aXy=a|] [Xi=aX,=0b| Xi=bXo=a| [X1=bX=1I

20/23

Interleave generation with testing + backtracking
whenever arc(NO, N1),
N1 instantiates one more variable than NO, and
N1 satisfies every constraint on instantiated variables

21/23

Interleave generation with testing + backtracking
whenever arc(NO, N1),
N1 instantiates one more variable than NO, and
N1 satisfies every constraint on instantiated variables

Reduce domains of un-instantiated variables via constraints
Constraint Graph: node = variable (e.g. 3-Color)

arc(Xj, Xj) <= Con[X;, Xj] #0
Arc Consistency: for arc(X;, Xj) and i < j,
(Vd € D(X;))(3d" € D(X;)) d,d" satisfy Con[X;, Xj]

removing d from D(X;) when no such d’ exists

22/23

Interleave generation with testing + backtracking
whenever arc(NO, N1),
N1 instantiates one more variable than NO, and
N1 satisfies every constraint on instantiated variables

Reduce domains of un-instantiated variables via constraints
Constraint Graph: node = variable (e.g. 3-Color)

arc(Xj, Xj) <= Con[X;, Xj] #0
Arc Consistency: for arc(X;, Xj) and i < j,
(Vd € D(X;))(3d" € D(X;)) d,d" satisfy Con[X;, Xj]
removing d from D(X;) when no such d’ exists

Optimizing the backtracking search
» MRYV: instantiate variable with minimum remaining values
(to minimize branching/cases)
» LCV: assign value that is least constraining (for greatest

chance of success)
23/23

