Constraint Satisfaction Problem [Var, Dom, Con]

- a list Var $=\left[X_{1}, \ldots, X_{n}\right]$ of variables X_{i}
- a list Dom $=\left[D_{1}, \ldots, D_{n}\right]$ of finite sets D_{i} of size s_{i}
- a finite set Con of constraints that may or may not be satisfied by (a node) instantiating X_{i} with a value in D_{i} (search space size $\prod_{i=1}^{n} s_{i}$)

Constraint Satisfaction Problem [Var, Dom, Con]

- a list Var $=\left[X_{1}, \ldots, X_{n}\right]$ of variables X_{i}
- a list Dom $=\left[D_{1}, \ldots, D_{n}\right]$ of finite sets D_{i} of size s_{i}
- a finite set Con of constraints that may or may not be satisfied by (a node) instantiating X_{i} with a value in D_{i} (search space size $\prod_{i=1}^{n} s_{i}$)
E.g. SAT: $D_{i}=\{0,1\}, \quad s_{i}=2$ for search space of size 2^{n}

Constraint Satisfaction Problem [Var, Dom, Con]

- a list Var $=\left[X_{1}, \ldots, X_{n}\right]$ of variables X_{i}
- a list Dom $=\left[D_{1}, \ldots, D_{n}\right]$ of finite sets D_{i} of size s_{i}
- a finite set Con of constraints that may or may not be satisfied by (a node) instantiating X_{i} with a value in D_{i} (search space size $\prod_{i=1}^{n} s_{i}$)
E.g. SAT: $D_{i}=\{0,1\}, \quad s_{i}=2$ for search space of size 2^{n}

Problem: satisfy all constraints in Con, instantiating variables if necessary/convenient

Constraint Satisfaction Problem [Var, Dom, Con]

- a list Var $=\left[X_{1}, \ldots, X_{n}\right]$ of variables X_{i}
- a list Dom $=\left[D_{1}, \ldots, D_{n}\right]$ of finite sets D_{i} of size s_{i}
- a finite set Con of constraints that may or may not be satisfied by (a node) instantiating X_{i} with a value in D_{i} (search space size $\prod_{i=1}^{n} s_{i}$)
E.g. SAT: $D_{i}=\{0,1\}, \quad s_{i}=2$ for search space of size 2^{n}

Problem: satisfy all constraints in Con, instantiating variables if necessary/convenient
| ?- $X \backslash=Y, X=a, Y=b$.
no

Constraint Satisfaction Problem [Var, Dom, Con]

- a list Var $=\left[X_{1}, \ldots, X_{n}\right]$ of variables X_{i}
- a list Dom $=\left[D_{1}, \ldots, D_{n}\right]$ of finite sets D_{i} of size s_{i}
- a finite set Con of constraints that may or may not be satisfied by (a node) instantiating X_{i} with a value in D_{i} (search space size $\prod_{i=1}^{n} s_{i}$)
E.g. SAT: $D_{i}=\{0,1\}, \quad s_{i}=2$ for search space of size 2^{n}

Problem: satisfy all constraints in Con, instantiating variables if necessary/convenient

Order-independent unification (Martelli-Montanari)

Input: set \mathcal{E} of pairs $\left[t, t^{\prime}\right]$
Output: substitution $[[X 1, t 1], \ldots,[X k, t k]]$ unifying pairs in \mathcal{E}

Order-independent unification (Martelli-Montanari)

Input: set \mathcal{E} of pairs $\left[t, t^{\prime}\right]$
Output: substitution $[[X 1, t 1], \ldots,[X k, t k]]$ unifying pairs in \mathcal{E}
Simplify \mathcal{E} non-deterministically until no longer possible

1. $[f(s 1, \ldots, s k), f(t 1, \ldots, t k)]$ (allowing $k=0$)
\Longrightarrow replace by pairs $[s 1, t 1], \ldots,[s k, t k]$
2. $[f(s 1, \ldots, s k), g(t 1, \ldots, t m)]$ where $f \neq g$ or $k \neq m$
\Longrightarrow halt with failure
3. $[X, X] \Longrightarrow$ delete
4. $[t, X]$ where t is not a var \Longrightarrow replace by $[X, t]$
5. $[X, t]$ where $X \notin \operatorname{Var}(t)$ and X occurs elsewhere \Longrightarrow apply $[X, t]$ to all other pairs
6. $[X, t]$ where $X \in \operatorname{Var}(t)$ and $X \neq t \Longrightarrow$ halt with failure

Order-independent unification (Martelli-Montanari)

Input: set \mathcal{E} of pairs $\left[t, t^{\prime}\right]$
Output: substitution $[[X 1, t 1], \ldots,[X k, t k]]$ unifying pairs in \mathcal{E}
Simplify \mathcal{E} non-deterministically until no longer possible

1. $[f(s 1, \ldots, s k), f(t 1, \ldots, t k)]$ (allowing $k=0$)
\Longrightarrow replace by pairs $[s 1, t 1], \ldots,[s k, t k]$
2. $[f(s 1, \ldots, s k), g(t 1, \ldots, t m)]$ where $f \neq g$ or $k \neq m$
\Longrightarrow halt with failure
3. $[X, X] \Longrightarrow$ delete
4. $[t, X]$ where t is not a var \Longrightarrow replace by $[X, t]$
5. $[X, t]$ where $X \notin \operatorname{Var}(t)$ and X occurs elsewhere \Longrightarrow apply $[X, t]$ to all other pairs
6. $[X, t]$ where $X \in \operatorname{Var}(t)$ and $X \neq t \Longrightarrow$ halt with failure
N.B. Prolog omits occurs check $X \in \operatorname{Var}(t)$ in 5, 6 for speed-up

Instantiate before negating (as failure)

$$
\begin{aligned}
& \text { \% \+p :- (p,!,fail); true. } \\
& p(X):-\backslash+X), r(X) \text {. } \\
& q(a) . \quad q(b) \text {. } \\
& r(a) . r(c) \text {. } \\
& \text { | ?- } \mathrm{p}(\mathrm{X}) \text {. } \\
& \text { \% contra ?- } p(c) \text {. }
\end{aligned}
$$

Instantiate before negating (as failure)

```
% \+p :- (p,!,fail); true.
p(X) :- \+q(X), r(X).
q(a). q(b).
r(a). r(c).
O
| ?- p(X).
                                    % contra ?- p(c).
p(X) :- \+q(X).
q(X) :- \+r(X).
r(c).
| ?- p(X).
% contra ?- p(a).
```


Generate-and-test

brute force: instantiate all variables before testing constraints

$$
\begin{aligned}
& \text { genTest(D1...Dn) :- node(X1...Xn,D1...Dn), } \\
& \text { constraint (X1...Xn). } \\
& \text { node(X1...Xn,D1...Dn) :- member (X1,D1),..., } \\
& \text { member (Xn,Dn). }
\end{aligned}
$$

Generate-and-test

brute force: instantiate all variables before testing constraints

$$
\begin{aligned}
& \text { genTest(D1...Dn) :- node(X1...Xn,D1...Dn), } \\
& \text { constraint(X1...Xn). } \\
& \text { node(X1...Xn,D1...Dn) :- member(X1,D1),..., } \\
& \text { member (Xn,Dn). }
\end{aligned}
$$

For each of the $\prod_{i=1}^{n} s_{i}$-choices of $\mathrm{X} 1 \ldots \mathrm{Xn}$ such that
node (X1. . . Xn,D1 . . .Dn)
(with Di of size si), assume
constraint(X1...Xn)
can be checked within a polynomial of X1...Xn.

Generate-and-test

brute force: instantiate all variables before testing constraints

$$
\begin{aligned}
& \text { genTest(D1...Dn) :- node(X1...Xn,D1...Dn), } \\
& \text { constraint (X1...Xn). } \\
& \text { node(X1...Xn,D1...Dn) :- member (X1,D1),..., } \\
& \text { member (Xn,Dn). }
\end{aligned}
$$

For each of the $\prod_{i=1}^{n} s_{i}$-choices of $\mathrm{X} 1 \ldots \mathrm{Xn}$ such that
node (X1. . . Xn,D1 . . .Dn)
(with Di of size si), assume
constraint(X1... Xn)
can be checked within a polynomial of X1... Xn.
Nodes are generated in lexicographic order without regard to constraints.

Canonical Example: Graph Coloring

- Consider N nodes in a graph
- Assign values $V_{1}, . ., V_{N}$ to each of the N nodes
- The values are taken in $\{R, G, B\}$
- Constraints: If there is an edge between i and j, then V_{i} must be different of V_{j}

Cryptarithmetic

SEND
 + MORE
 MONEY

Prolog code

Inferring changes

Horn-SAT by minimal changes to $00 \cdots 0$ (all variables $0 /$ false)

CSAT	definite clause	list encoding
$\bar{u} \vee x \vee \bar{z}$	$x:-u, z$.	$[x, u, z]$
$\bar{u} \vee \bar{v}$	false :- u, v.	$[$ false $, u, v]$

Inferring changes

Horn-SAT by minimal changes to $00 \cdots 0$ (all variables $0 /$ false)

CSAT	definite clause	list encoding
$\bar{u} \vee x \vee \bar{z}$	$x:-u, z$.	$[x, u, z]$
$\bar{u} \vee \bar{v}$	false :- u, v.	$\left[f_{a} / s e, u, v\right]$

For each stage i, collect the variables set at stage i to $1 /$ true in A_{i}

$$
\begin{aligned}
A_{0} & :=\emptyset \quad \text { (all variables false) } \\
A_{i+1} & :=\{x \mid \underbrace{\text { member }([x \mid T], K B)}_{x:-t_{1} \ldots t_{k} \text { in } K B} \text { and } \underbrace{\text { all }\left(T, A_{i}\right)}\} \\
& \left\{t_{1} \ldots t_{k}\right\} \subseteq A_{i}
\end{aligned}
$$

check: false $\notin A_{n}$

Inferring changes

Horn-SAT by minimal changes to $00 \cdots 0$ (all variables $0 /$ false)

CSAT	definite clause	list encoding
$\bar{u} \vee x \vee \bar{z}$	$x:-u, z$.	$[x, u, z]$
$\bar{u} \vee \bar{v}$	false :- u, v.	$[$ false, $u, v]$

For each stage i, collect the variables set at stage i to $1 /$ true in A_{i}

$$
\begin{aligned}
A_{0} & :=\emptyset \quad \text { (all variables false) } \\
A_{i+1} & :=\{x \mid \underbrace{\text { member }([x \mid T], K B)}_{x:-t_{1} \ldots t_{k} \text { in } K B} \text { and } \underbrace{\text { all }\left(T, A_{i}\right)}\} \\
& \left\{t_{1} \ldots t_{k}\right\} \subseteq A_{i}
\end{aligned}
$$

check: false $\notin A_{n}$
No minimal set for non-Horn $x \vee y$ (or xor).

Instantiate one variable at a time

 allow node to map X_{i} to ?, raising search space size from$$
\prod_{i=1}^{n} s_{i} \text { to } \prod_{i=1}^{n}\left(s_{i}+1\right) \text { from adding ? to } D_{i}
$$

PAY-OFF: search tree of depth n and branching factor max s_{i} with start node instantiating no variable, and an arc instantiating least uninstantiated variable

Instantiate one variable at a time

 allow node to map X_{i} to ?, raising search space size from$$
\prod_{i=1}^{n} s_{i} \text { to } \prod_{i=1}^{n}\left(s_{i}+1\right) \text { from adding ? to } D_{i}
$$

PAY-OFF: search tree of depth n and branching factor max s_{i} with start node instantiating no variable, and an arc instantiating least uninstantiated variable
E.g. $n=2, \quad D_{1}=D_{2}=\{a, b\}$

$$
X_{1}=?, X_{2}=?
$$

$$
X_{1}=a, X_{2}=?
$$

$$
X_{1}=b, X_{2}=?
$$

Interleave generation with testing + backtracking whenever $\operatorname{arc}(N 0, N 1)$,
$N 1$ instantiates one more variable than $N 0$, and
N1 satisfies every constraint on instantiated variables

Interleave generation with testing + backtracking

 whenever $\operatorname{arc}(N 0, N 1)$,$N 1$ instantiates one more variable than $N 0$, and
N1 satisfies every constraint on instantiated variables
Reduce domains of un-instantiated variables via constraints
Constraint Graph: node $=$ variable (e.g. 3-Color)

$$
\operatorname{arc}\left(X_{i}, X_{j}\right) \Longleftrightarrow \operatorname{Con}\left[X_{i}, X_{j}\right] \neq \emptyset
$$

Arc Consistency: for $\operatorname{arc}\left(X_{i}, X_{j}\right)$ and $i<j$,

$$
\left(\forall d \in D\left(X_{i}\right)\right)\left(\exists d^{\prime} \in D\left(X_{j}\right)\right) d, d^{\prime} \text { satisfy Con }\left[X_{i}, X_{j}\right]
$$

removing d from $D\left(X_{i}\right)$ when no such d^{\prime} exists

Interleave generation with testing + backtracking

 whenever $\operatorname{arc}(N 0, N 1)$,$N 1$ instantiates one more variable than $N 0$, and
N1 satisfies every constraint on instantiated variables
Reduce domains of un-instantiated variables via constraints
Constraint Graph: node = variable (e.g. 3-Color)

$$
\operatorname{arc}\left(X_{i}, X_{j}\right) \Longleftrightarrow \operatorname{Con}\left[X_{i}, X_{j}\right] \neq \emptyset
$$

Arc Consistency: for $\operatorname{arc}\left(X_{i}, X_{j}\right)$ and $i<j$,

$$
\left(\forall d \in D\left(X_{i}\right)\right)\left(\exists d^{\prime} \in D\left(X_{j}\right)\right) d, d^{\prime} \text { satisfy } \operatorname{Con}\left[X_{i}, X_{j}\right]
$$

removing d from $D\left(X_{i}\right)$ when no such d^{\prime} exists
Optimizing the backtracking search

- MRV: instantiate variable with minimum remaining values (to minimize branching/cases)
- LCV: assign value that is least constraining (for greatest chance of success)

