Frontier search (manage choices)

frontierSearch([Node|Rest]) :- goal(Node);
 (findall(Next, arc(Node,Next), Children),
 add2frontier(Children, Rest, NewFrontier),
 frontierSearch(NewFrontier)).

Frontier search (manage choices)

frontierSearch([Node|Rest]) :- goal(Node);
 (findall(Next, arc(Node,Next), Children),
 add2frontier(Children, Rest, NewFrontier),
 frontierSearch(NewFrontier)).

Depth first: append(Children, Rest, NewFrontier)
Breadth-first: append(Rest, Children, NewFrontier)

Frontier search (manage choices)

frontierSearch([Node|Rest]) :- goal(Node);
 (findall(Next, arc(Node,Next), Children),
 add2frontier(Children, Rest, NewFrontier),
 frontierSearch(NewFrontier)).

Depth first: append(Children, Rest, NewFrontier)
Breadth-first: append(Rest, Children, NewFrontier)

For add2frontier(Children, Rest, NewFrontier), require NewFrontier merges Children and Rest

where a list L is defined to *merge* lists L1 and L2 if
(a) every member of L is a member of L1 or L2
(b) every member of L1 or of L2 is a member of L.

Exercise (Prolog)

Suppose a positive integer Seed links nodes 1,2,... in two ways arc(N,M,Seed) :- M is N*Seed. arc(N,M,Seed) :- M is N*Seed +1.

e.g. Seed=3 gives arcs (1,3), (1,4), (3,9), (3, 10)...

Exercise (Prolog)

Suppose a positive integer Seed links nodes 1,2,... in two ways arc(N,M,Seed) :- M is N*Seed. arc(N,M,Seed) :- M is N*Seed +1.

e.g. Seed=3 gives arcs (1,3), (1,4), (3,9), (3, 10)...

- Goal nodes are multiples of a positive integer Target goal(N,Target) :- 0 is N mod Target.
- e.g. Target=13 gives goals 13, 26, 39 ...

Exercise (Prolog)

- Suppose a positive integer Seed links nodes 1,2,... in two ways arc(N,M,Seed) :- M is N*Seed. arc(N,M,Seed) :- M is N*Seed +1.
- e.g. Seed=3 gives arcs (1,3), (1,4), (3,9), (3, 10)...
- Goal nodes are multiples of a positive integer Target goal(N,Target) :- 0 is N mod Target.
- e.g. Target=13 gives goals 13, 26, 39 ...
- Modify frontier search to define predicates
 breadth1st(+Start, ?Found, +Seed, +Target)
 depth1st(+Start, ?Found, +Seed, +Target)

that search breadth-first and depth-first respectively for a Target-goal node Found linked to Start by Seed-arcs.

For add2frontier(Children, Rest, NewFrontier), require

NewFrontier merges Children and Rest

and for NewFrontier = [Head|Tail], ensure

Head is "no worse than" any in Tail.

For add2frontier(Children, Rest, NewFrontier), require

NewFrontier merges Children and Rest

and for NewFrontier = [Head|Tail], ensure

Head is "no worse than" any in Tail.

What can it mean for Node1 to be no worse than Node2 ?

(A1) Node1 costs no more than Node2

For add2frontier(Children, Rest, NewFrontier), require

NewFrontier merges Children and Rest

and for NewFrontier = [Head|Tail], ensure

Head is "no worse than" any in Tail.

What can it mean for Node1 to be no worse than Node2 ?

(A1) Node1 costs no more than Node2

(A2) Node1 is deemed no further from a goal node than Node2

For add2frontier(Children, Rest, NewFrontier), require

NewFrontier merges Children and Rest

and for NewFrontier = [Head|Tail], ensure

Head is "no worse than" any in Tail.

What can it mean for Node1 to be no worse than Node2 ?

(A1) Node1 costs no more than Node2

(A2) Node1 is deemed no further from a goal node than Node2

(A3) some mix of (A1) and (A2)

For add2frontier(Children, Rest, NewFrontier), require

NewFrontier merges Children and Rest

and for NewFrontier = [Head|Tail], ensure

Head is "no worse than" any in Tail.

What can it mean for Node1 to be no worse than Node2 ?

(A1) Node1 costs no more than Node2 \sim minimum cost search (= breadth-first if every arc costs 1)

(A2) Node1 is deemed no further from a goal node than Node2

(A3) some mix of (A1) and (A2)

For add2frontier(Children, Rest, NewFrontier), require

NewFrontier merges Children and Rest

and for NewFrontier = [Head|Tail], ensure

Head is "no worse than" any in Tail.

What can it mean for Node1 to be no worse than Node2 ?

- (A2) Node1 is deemed no further from a goal node than Node2 \rightsquigarrow best-first search (= depth-first for heuristic \propto depth⁻¹)

(A3) some mix of (A1) and (A2)

For add2frontier(Children, Rest, NewFrontier), require

NewFrontier merges Children and Rest

and for NewFrontier = [Head|Tail], ensure

Head is "no worse than" any in Tail.

What can it mean for Node1 to be no worse than Node2 ?

- (A2) Node1 is deemed no further from a goal node than Node2 \rightsquigarrow best-first search (= depth-first for heuristic \propto depth⁻¹)
- (A3) some mix of (A1) and (A2) \rightsquigarrow A-star

Arc costs (space, time, money, ...)

arc(wa,nt,1). arc(q,nsw,2). arc(nt,sa,2). arc(sa,nsw,5). arc(sa,v,1). arc(v, nsw, 1).

 $\operatorname{arc}(\operatorname{nt},q,2)$. arc(wa,sa,3). arc(sa,q,3).

Arc costs (space, time, money, ...)

arc(wa,nt,1). arc(q,nsw,2). arc(nt,sa,2). arc(sa,nsw,5). arc(sa,v,1). arc(v, nsw, 1).

arc(nt,q,2). arc(wa,sa,3). arc(sa,q,3).

$$cost(wa,nt,q,nsw) = 1 + 2 + 2 = 5$$

 $cost(x_1, x_2, ..., x_{k+1}) := \sum_{i=1}^k cost(x_i, x_{i+1})$

Arc costs (space, time, money, ...)

arc(wa,nt,1). arc(q,nsw,2). arc(nt,sa,2). arc(sa,nsw,5). arc(v,nsw,1). arc(nt,q,2).
arc(wa,sa,3).
arc(sa,q,3).
arc(sa,v,1).

$$cost(wa,nt,q,nsw) = 1 + 2 + 2 = 5$$

 $cost(x_1, x_2, ..., x_{k+1}) := \sum_{i=1}^{k} cost(x_i, x_{i+1})$
 $cost(wa,sa,nsw) = 3 + 5 = 8$

h(Node) = estimate the minimum cost ofa path from Node to a goal node

h(Node) = estimate the minimum cost of a path from Node to a goal node

EXAMPLES

Fsm accept where node = [Q,String] and every arc costs 1

h([Q, String]) = length(String)

h(Node) = estimate the minimum cost ofa path from Node to a goal node

EXAMPLES

Fsm accept where node = [Q,String] and every arc costs 1

h([Q, String]) = length(String)

Prolog search where node = list of propositions to prove, and every arc costs 1

h(List) = length(List)

h(Node) = estimate the minimum cost ofa path from Node to a goal node

EXAMPLES

Fsm accept where node = [Q,String] and every arc costs 1

h([Q, String]) = length(String)

Prolog search where node = list of propositions to prove, and every arc costs 1

$$h(\texttt{List}) = \texttt{length}(\texttt{List})$$

Node = point on a Euclidean plane, cost = distance between nodes, goal is a point G

h(Node) = straight-line distance to G

h(Node) = estimate the minimum cost ofa path from Node to a goal node

EXAMPLES

Fsm accept where node = [Q,String] and every arc costs 1

h([Q, String]) = length(String)

Prolog search where node = list of propositions to prove, and every arc costs 1

$$h(\texttt{List}) = \texttt{length}(\texttt{List})$$

Node = point on a Euclidean plane, cost = distance between nodes, goal is a point G

h(Node) = straight-line distance to G

estimate assuming lots of arcs (simplifying the problem)

Best-first search

Form NewFrontier = [Head|Tail] such that

 $h(\texttt{Head}) \leq h(\texttt{Node})$ for every Node in Tail

Best-first search

Form NewFrontier = [Head|Tail] such that

 $h(\texttt{Head}) \leq h(\texttt{Node})$ for every Node in Tail

Poole & Mackworth

Min-cost

 $\cot(n_1 \cdots n_k) =$ $\sum_{i=1}^{k-1} \cot(n_i, n_{i+1})$

cost(wa nt q nsw) = 5cost(wa sa nsw) = 8

 $\cot(n_1 \cdots n_k) = \sum_{i=1}^{k-1} \cot(n_i, n_{i+1})$

cost(wa nt q nsw) = 5cost(wa sa nsw) = 8

add2frontier(Children, Rest, [Head|Tail])
cost(Start···Head) ≤ cost(Start···n) for each n in Tail ?

 $\cot(n_1 \cdots n_k) = \sum_{i=1}^{k-1} \cot(n_i, n_{i+1})$

cost(wa nt q nsw) = 5cost(wa sa nsw) = 8

 $\cot(n_1 \cdots n_k) = \sum_{i=1}^{k-1} \cot(n_i, n_{i+1})$

cost(wa nt q nsw) = 5cost(wa sa nsw) = 8

add2frontier(Children, Rest, [Head|Tail])

 $cost(Start \cdots Head) \leq cost(Start \cdots n)$ for each *n* in Tail ?

▶ node ~→ path or pair (n,cost(Start···n))

 $\cot(n_1 \cdots n_k) = \sum_{i=1}^{k-1} \cot(n_i, n_{i+1})$

cost(wa nt q nsw) = 5cost(wa sa nsw) = 8

add2frontier(Children, Rest, [Head|Tail])

 $cost(Start \cdots Head) \leq cost(Start \cdots n)$ for each *n* in Tail ?

▶ node ~→ path or pair (n,cost(Start···n))

what about proximity to goal?

h(n) =estimate of min cost path $n \cdots$ goal

solution =
$$\underbrace{\text{start}\cdots n}_{\text{explored}} \cdots \text{goal}$$

$$f(\text{start}\cdots n) = \cos(\text{start}\cdots n) + h(n)$$

Ensure Frontier = [Head|Tail] where Head has minimal f

▶
$$h(n) = 0$$
 for every $n \rightsquigarrow$ min-cost

►
$$cost(start \cdots n) = 0$$
 for every $n \rightsquigarrow best-first (disregarding the past)$

 A^* is *admissible* (under cost, *h*) if it returns a solution of min cost whenever a solution exists.

 A^* is *admissible* (under cost, *h*) if it returns a solution of min cost whenever a solution exists.

3 conditions sufficient for admissibility

under-estimate: for every solution $n \cdots$ goal, $0 \le h(n) \le \cos(n \cdots \text{goal})$

 A^* is *admissible* (under cost, *h*) if it returns a solution of min cost whenever a solution exists.

3 conditions sufficient for admissibility

under-estimate:for every solution $n \cdots$ goal,
 $0 \le h(n) \le \cos(n \cdots$ goal)termination:for some $\epsilon > 0$, every arc costs $\ge \epsilon$ finite branching: $\{n' \mid \operatorname{arc}(n, n')\}$ is finite for each node n

 A^* is *admissible* (under cost, *h*) if it returns a solution of min cost whenever a solution exists.

3 conditions sufficient for admissibility

under-estimate:for every solution $n \cdots$ goal,
 $0 \le h(n) \le cost(n \cdots goal)$ termination:for some $\epsilon > 0$, every arc costs $\ge \epsilon$ finite branching: $\{n' \mid arc(n, n')\}$ is finite for each node n

Assuming the 3 conditions above, let p be a solution.

TO SHOW: A^* returns a solution with min cost *c*.

 A^* is *admissible* (under cost, *h*) if it returns a solution of min cost whenever a solution exists.

3 conditions sufficient for admissibility

under-estimate:for every solution $n \cdots$ goal,
 $0 \le h(n) \le cost(n \cdots goal)$ termination:for some $\epsilon > 0$, every arc costs $\ge \epsilon$ finite branching: $\{n' \mid arc(n, n')\}$ is finite for each node n

Assuming the 3 conditions above, let p be a solution.

TO SHOW: A^{*} returns a solution with min cost c.

Let $F_0 = [\text{Start}]$, F_{n+1} be A^{*}'s next frontier after F_n ([] if none), and c_n be the cost of the head of F_n (∞ if $F_n = []$).

 A^* is *admissible* (under cost, *h*) if it returns a solution of min cost whenever a solution exists.

3 conditions sufficient for admissibility

under-estimate:for every solution $n \cdots \text{goal}$,
 $0 \le h(n) \le \text{cost}(n \cdots \text{goal})$ termination:for some $\epsilon > 0$, every arc costs $\ge \epsilon$ finite branching: $\{n' \mid \operatorname{arc}(n, n')\}$ is finite for each node n

Assuming the 3 conditions above, let p be a solution.

TO SHOW: A^{*} returns a solution with min cost c.

Let $F_0 = [\text{Start}]$, F_{n+1} be A^{*}'s next frontier after F_n ([] if none), and c_n be the cost of the head of F_n (∞ if $F_n = []$).

(i) for every $n \ge 0$ s.t. $c_n < c$, F_n has a prefix of p

 A^* is *admissible* (under cost, *h*) if it returns a solution of min cost whenever a solution exists.

3 conditions sufficient for admissibility

under-estimate:for every solution $n \cdots$ goal,
 $0 \le h(n) \le \cos(n \cdots$ goal)termination:for some $\epsilon > 0$, every arc costs $\ge \epsilon$ finite branching: $\{n' \mid \operatorname{arc}(n, n')\}$ is finite for each node n

Assuming the 3 conditions above, let p be a solution.

TO SHOW: A^{*} returns a solution with min cost c.

Let $F_0 = [\text{Start}]$, F_{n+1} be A^{*}'s next frontier after F_n ([] if none), and c_n be the cost of the head of F_n (∞ if $F_n = []$).

(i) for every $n \ge 0$ s.t. $c_n < c$, F_n has a prefix of p

(ii) $c = c_n$ for some *n* s.t. the head of F_n is a solution.