Frontier search (manage choices)

frontierSearch([Node|Rest]) :- goal(Node);
(findall(Next, arc(Node,Next), Children), add2frontier(Children, Rest, NewFrontier), frontierSearch(NewFrontier)).

Frontier search (manage choices)

```
frontierSearch([Node|Rest]) :- goal(Node);
    (findall(Next, arc(Node,Next), Children),
    add2frontier(Children, Rest, NewFrontier),
    frontierSearch(NewFrontier)).
```

Depth first: append(Children, Rest, NewFrontier)
Breadth-first: append(Rest, Children, NewFrontier)

Frontier search (manage choices)

```
frontierSearch([Node|Rest]) :- goal(Node);
    (findall(Next, arc(Node,Next), Children),
    add2frontier(Children, Rest, NewFrontier),
    frontierSearch(NewFrontier)).
```

Depth first: append(Children, Rest, NewFrontier)
Breadth-first: append(Rest, Children, NewFrontier)
For add2frontier(Children, Rest, NewFrontier), require
NewFrontier merges Children and Rest
where a list L is defined to merge lists L1 and L2 if
(a) every member of L is a member of L 1 or L2
(b) every member of L1 or of L2 is a member of L.

Exercise (Prolog)

Suppose a positive integer Seed links nodes $1,2, \ldots$ in two ways $\operatorname{arc}(N, M$, Seed $):-M$ is $N *$ Seed.
$\operatorname{arc}(N, M$, Seed $):-M$ is $N *$ Seed +1.
e.g. Seed $=3$ gives arcs $(1,3),(1,4),(3,9),(3,10) \ldots$

Exercise (Prolog)

Suppose a positive integer Seed links nodes $1,2, \ldots$ in two ways

$$
\begin{aligned}
& \operatorname{arc}(N, M, \text { Seed }):-M \text { is } N * \text { Seed. } \\
& \operatorname{arc}(N, M, \text { Seed }):-M \text { is } N * \text { Seed }+1 .
\end{aligned}
$$

e.g. Seed $=3$ gives arcs $(1,3),(1,4),(3,9),(3,10) \ldots$

Goal nodes are multiples of a positive integer Target goal (N,Target) :- 0 is N mod Target.
e.g. Target $=13$ gives goals $13,26,39 \ldots$

Exercise (Prolog)

Suppose a positive integer Seed links nodes $1,2, \ldots$ in two ways

$$
\begin{aligned}
& \operatorname{arc}(N, M, \text { Seed }):-M \text { is } N * \text { Seed. } \\
& \operatorname{arc}(N, M, \text { Seed }):-M \text { is } N * \text { Seed }+1 .
\end{aligned}
$$

e.g. Seed $=3$ gives arcs $(1,3),(1,4),(3,9),(3,10) \ldots$

Goal nodes are multiples of a positive integer Target goal (N,Target) :- 0 is N mod Target.
e.g. Target $=13$ gives goals $13,26,39 \ldots$

Modify frontier search to define predicates breadth1st(+Start, ?Found, +Seed, +Target) depth1st(+Start, ?Found, +Seed, +Target)
that search breadth-first and depth-first respectively for a
Target-goal node Found linked to Start by Seed-arcs.

Refining frontier search

For add2frontier(Children, Rest, NewFrontier), require
NewFrontier merges Children and Rest
and for NewFrontier $=$ [Head|Tail], ensure
Head is "no worse than" any in Tail.

Refining frontier search

For add2frontier(Children, Rest, NewFrontier), require NewFrontier merges Children and Rest and for NewFrontier $=$ [Head|Tail], ensure
Head is "no worse than" any in Tail.

What can it mean for Node1 to be no worse than Node2 ?
(A1) Node1 costs no more than Node2

Refining frontier search

For add2frontier(Children, Rest, NewFrontier), require NewFrontier merges Children and Rest and for NewFrontier $=$ [Head|Tail], ensure
Head is "no worse than" any in Tail.

What can it mean for Node1 to be no worse than Node2 ?
(A1) Node1 costs no more than Node2
(A2) Node1 is deemed no further from a goal node than Node2

Refining frontier search

For add2frontier(Children, Rest, NewFrontier), require NewFrontier merges Children and Rest and for NewFrontier $=$ [Head|Tail], ensure
Head is "no worse than" any in Tail.

What can it mean for Node1 to be no worse than Node2 ?
(A1) Node1 costs no more than Node2
(A2) Node1 is deemed no further from a goal node than Node2
(A3) some mix of (A1) and (A2)

Refining frontier search

For add2frontier(Children, Rest, NewFrontier), require NewFrontier merges Children and Rest and for NewFrontier $=$ [Head|Tail], ensure
Head is "no worse than" any in Tail.

What can it mean for Node1 to be no worse than Node2 ?
(A1) Node1 costs no more than Node2 \rightsquigarrow minimum cost search ($=$ breadth-first if every arc costs 1)
(A2) Node1 is deemed no further from a goal node than Node2
(A3) some mix of (A1) and (A2)

Refining frontier search

For add2frontier(Children, Rest, NewFrontier), require NewFrontier merges Children and Rest and for NewFrontier $=$ [Head|Tail], ensure
Head is "no worse than" any in Tail.

What can it mean for Node1 to be no worse than Node2 ?
(A1) Node1 costs no more than Node2 \rightsquigarrow minimum cost search ($=$ breadth-first if every arc costs 1)
(A2) Node1 is deemed no further from a goal node than Node2 \rightsquigarrow best-first search ($=$ depth-first for heuristic \propto depth $^{-1}$)
(A3) some mix of (A1) and (A2)

Refining frontier search

For add2frontier(Children, Rest, NewFrontier), require NewFrontier merges Children and Rest and for NewFrontier $=$ [Head|Tail], ensure
Head is "no worse than" any in Tail.

What can it mean for Node1 to be no worse than Node2 ?
(A1) Node1 costs no more than Node2 \rightsquigarrow minimum cost search (= breadth-first if every arc costs 1)
(A2) Node1 is deemed no further from a goal node than Node2 \rightsquigarrow best-first search ($=$ depth-first for heuristic \propto depth $^{-1}$)
(A3) some mix of (A1) and (A2)
\rightsquigarrow A-star

Arc costs (space, time, money, . . .)

```
arc(wa,nt,1). . arc(nt,q,2).
arc(q,nsw,2). arc(wa,sa,3).
arc(nt,sa,2). arc(sa,q,3).
arc(sa,nsw,5). arc(sa,v,1).
arc(v,nsw,1).
```


Arc costs (space, time, money, . . .)

```
arc(wa,nt,1). . arc(nt,q,2).
arc(q,nsw,2). arc(wa,sa,3).
arc(nt,sa,2). arc(sa,q,3).
arc(sa,nsw,5). arc(sa,v,1).
arc(v,nsw,1).
```


$$
\begin{aligned}
\operatorname{cost}(\mathrm{wa}, \mathrm{nt}, \mathrm{q}, \mathrm{nsw}) & =1+2+2=5 \\
\operatorname{cost}\left(x_{1}, x_{2}, \ldots, x_{k+1}\right) & :=\sum_{i=1}^{k} \operatorname{cost}\left(x_{i}, x_{i+1}\right)
\end{aligned}
$$

Arc costs (space, time, money, . . .)

```
arc(wa,nt,1). . arc(nt,q,2).
arc(q,nsw,2). arc(wa,sa,3).
arc(nt,sa,2). arc(sa,q,3).
arc(sa,nsw,5). arc(sa,v,1).
arc(v,nsw,1).
```


$$
\begin{aligned}
\operatorname{cost}(\mathrm{wa}, \mathrm{nt}, \mathrm{q}, \mathrm{nsw}) & =1+2+2=5 \\
\operatorname{cost}\left(x_{1}, x_{2}, \ldots, x_{k+1}\right) & :=\sum_{i=1}^{k} \operatorname{cost}\left(x_{i}, x_{i+1}\right) \\
\operatorname{cost}(\mathrm{wa}, \mathrm{sa}, \mathrm{nsw}) & =3+5=8
\end{aligned}
$$

Heuristics

$$
\begin{aligned}
h(\text { Node })= & \text { estimate the minimum cost of } \\
& \text { a path from Node to a goal node }
\end{aligned}
$$

Heuristics

$$
\begin{aligned}
h(\text { Node })= & \text { estimate the minimum cost of } \\
& \text { a path from Node to a goal node }
\end{aligned}
$$

Examples

- Fsm accept where node $=$ [Q,String] and every arc costs 1

$$
h([\mathrm{Q}, \text { String }])=\text { length(String })
$$

Heuristics

$$
\begin{aligned}
h(\text { Node })= & \text { estimate the minimum cost of } \\
& \text { a path from Node to a goal node }
\end{aligned}
$$

Examples

- Fsm accept where node $=$ [Q,String] and every arc costs 1

$$
h([\mathrm{Q}, \text { String }])=\text { length }(\text { String })
$$

- Prolog search where node $=$ list of propositions to prove, and every arc costs 1

$$
h(\text { List })=\text { length }(\text { List })
$$

Heuristics

$$
\begin{aligned}
h(\text { Node })= & \text { estimate the minimum cost of } \\
& \text { a path from Node to a goal node }
\end{aligned}
$$

Examples

- Fsm accept where node $=$ [Q, String] and every arc costs 1

$$
h([\mathrm{Q}, \text { String }])=\text { length }(\text { String })
$$

- Prolog search where node $=$ list of propositions to prove, and every arc costs 1

$$
h(\text { List })=\text { length }(\text { List })
$$

- Node $=$ point on a Euclidean plane, cost $=$ distance between nodes, goal is a point G

$$
h(\text { Node })=\text { straight-line distance to } \mathrm{G}
$$

Heuristics

$$
\begin{aligned}
h(\text { Node })= & \text { estimate the minimum cost of } \\
& \text { a path from Node to a goal node }
\end{aligned}
$$

Examples

- Fsm accept where node $=[$, String $]$ and every arc costs 1

$$
h([\mathrm{Q}, \text { String }])=\text { length }(\text { String })
$$

- Prolog search where node $=$ list of propositions to prove, and every arc costs 1

$$
h(\text { List })=\text { length }(\text { List })
$$

- Node $=$ point on a Euclidean plane, cost $=$ distance between nodes, goal is a point G

$$
h(\text { Node })=\text { straight-line distance to } G
$$

- estimate assuming lots of arcs (simplifying the problem)

Best-first search

Form NewFrontier $=$ [Head|Tail] such that

$$
h(\text { Head }) \leq h(\text { Node }) \text { for every Node in Tail }
$$

Best-first search

Form NewFrontier = [Head|Tail] such that

$$
h(\text { Head }) \leq h(\text { Node }) \text { for every Node in Tail }
$$

Min-cost

Min-cost \neq breadth-first

$$
\begin{aligned}
& \operatorname{cost}\left(n_{1} \cdots n_{k}\right)= \\
& \sum_{i=1}^{k-1} \operatorname{cost}\left(n_{i}, n_{i+1}\right) \\
& \operatorname{cost}(\text { wa nt } q \text { nsw })=5 \\
& \operatorname{cost}(\text { wa sa nsw) }=8
\end{aligned}
$$

Min-cost \neq breadth-first

$$
\begin{aligned}
& \operatorname{cost}\left(n_{1} \cdots n_{k}\right)= \\
& \sum_{i=1}^{k-1} \operatorname{cost}\left(n_{i}, n_{i+1}\right) \\
& \operatorname{cost}(\text { wa nt } q \text { nsw })=5 \\
& \operatorname{cost}(\text { wa sa nsw) })=8
\end{aligned}
$$

add2frontier (Children, Rest, [Head|Tail])

$$
\operatorname{cost}(\text { Start } \cdots \text { Head }) \leq \operatorname{cost}(\text { Start } \cdots n) \text { for each } n \text { in Tail ? }
$$

Min-cost \neq breadth-first

$$
\begin{aligned}
& \operatorname{cost}\left(n_{1} \cdots n_{k}\right)= \\
& \sum_{i=1}^{k-1} \operatorname{cost}\left(n_{i}, n_{i+1}\right) \\
& \operatorname{cost}(\text { wa nt } q \text { nsw })=5 \\
& \operatorname{cost}(\text { wa sa nsw) })=8
\end{aligned}
$$

add2frontier (Children, Rest, [Head|Tail])
$\operatorname{cost}($ Start \cdots Head $) \leq \operatorname{cost}($ Start $\cdots n)$ for each n in Tail ?

- node \rightsquigarrow path

Min-cost \neq breadth-first

$$
\begin{aligned}
& \operatorname{cost}\left(n_{1} \cdots n_{k}\right)= \\
& \sum_{i=1}^{k-1} \operatorname{cost}\left(n_{i}, n_{i+1}\right) \\
& \operatorname{cost}(\text { wa nt q nsw) }=5 \\
& \operatorname{cost}(\text { wa sa nsw) })=8
\end{aligned}
$$

add2frontier (Children, Rest, [Head|Tail]) $\operatorname{cost}($ Start \cdots Head $) \leq \operatorname{cost}($ Start $\cdots n)$ for each n in Tail ?

- node \rightsquigarrow path or pair $(n, \operatorname{cost}($ Start $\cdots n))$

Min-cost \neq breadth-first

$$
\begin{aligned}
& \operatorname{cost}\left(n_{1} \cdots n_{k}\right)= \\
& \sum_{i=1}^{k-1} \operatorname{cost}\left(n_{i}, n_{i+1}\right)
\end{aligned}
$$

$\operatorname{cost}($ wa nt q nsw) $=5$ $\operatorname{cost}($ wa sa nsw) $=8$
add2frontier (Children, Rest, [Head|Tail])
$\operatorname{cost}($ Start \cdots Head $) \leq \operatorname{cost}($ Start $\cdots n)$ for each n in Tail ?

- node \rightsquigarrow path or pair $(n, \operatorname{cost}($ Start $\cdots n))$
- what about proximity to goal?

$$
h(n)=\text { estimate of min cost path } n \cdots \text { goal }
$$

$$
\begin{aligned}
\text { solution }= & \underbrace{\text { start } \cdots n}_{\text {explored }} \cdots \text { goal } \\
f(\text { start } \cdots n)= & \operatorname{cost(\text {start}\cdots n)} \\
& +h(n)
\end{aligned}
$$

$$
\begin{aligned}
\text { solution }= & \underbrace{\text { start } \cdots n}_{\text {explored }} \cdots \text { goal } \\
f(\text { start } \cdots n)= & \operatorname{cost(\text {start}\cdots n)} \\
& +h(n)
\end{aligned}
$$

Ensure Frontier $=[$ Head \mid Tail $]$ where Head has minimal f

- $h(n)=0$ for every $n \rightsquigarrow$ min-cost
- cost(start $\cdots n)=0$ for every $n \rightsquigarrow$ best-first (disregarding the past)

Admissibility

A* is admissible (under cost, h) if it returns a solution of min cost whenever a solution exists.

Admissibility

A* is admissible (under cost, h) if it returns a solution of min cost whenever a solution exists.

3 conditions sufficient for admissibility
under-estimate: for every solution $n \cdots$ goal,

$$
0 \leq h(n) \leq \operatorname{cost}(n \cdots \text { goal })
$$

Admissibility

A* is admissible (under cost, h) if it returns a solution of min cost whenever a solution exists.

3 conditions sufficient for admissibility
under-estimate: for every solution $n \cdots$ goal,

$$
0 \leq h(n) \leq \operatorname{cost}(n \cdots \text { goal })
$$

termination: for some $\epsilon>0$, every arc costs $\geq \epsilon$ finite branching: $\quad\left\{n^{\prime} \mid \operatorname{arc}\left(n, n^{\prime}\right)\right\}$ is finite for each node n

Admissibility

A^{*} is admissible (under cost, h) if it returns a solution of min cost whenever a solution exists.

3 conditions sufficient for admissibility
under-estimate: for every solution $n \cdots$ goal,

$$
0 \leq h(n) \leq \operatorname{cost}(n \cdots \text { goal })
$$

termination: for some $\epsilon>0$, every arc costs $\geq \epsilon$ finite branching: $\quad\left\{n^{\prime} \mid \operatorname{arc}\left(n, n^{\prime}\right)\right\}$ is finite for each node n

Assuming the 3 conditions above, let p be a solution.
To show: A^{*} returns a solution with min cost c.

Admissibility

A^{*} is admissible (under cost, h) if it returns a solution of min cost whenever a solution exists.

3 conditions sufficient for admissibility
under-estimate: for every solution $n \cdots$ goal,

$$
0 \leq h(n) \leq \operatorname{cost}(n \cdots \text { goal })
$$

termination: for some $\epsilon>0$, every arc costs $\geq \epsilon$ finite branching: $\quad\left\{n^{\prime} \mid \operatorname{arc}\left(n, n^{\prime}\right)\right\}$ is finite for each node n

Assuming the 3 conditions above, let p be a solution.
To show: A^{*} returns a solution with min cost c.
Let $F_{0}=[$ Start $], F_{n+1}$ be A*'s next frontier after F_{n} ([] if none), and c_{n} be the cost of the head of $F_{n}\left(\infty\right.$ if $\left.F_{n}=[]\right)$.

Admissibility

A^{*} is admissible (under cost, h) if it returns a solution of min cost whenever a solution exists.

3 conditions sufficient for admissibility
under-estimate: for every solution $n \cdots$ goal,

$$
0 \leq h(n) \leq \operatorname{cost}(n \cdots \text { goal })
$$

termination: for some $\epsilon>0$, every arc costs $\geq \epsilon$ finite branching: $\quad\left\{n^{\prime} \mid \operatorname{arc}\left(n, n^{\prime}\right)\right\}$ is finite for each node n

Assuming the 3 conditions above, let p be a solution.
To SHOW: A^{*} returns a solution with min cost c.
Let $F_{0}=[$ Start $], F_{n+1}$ be A*'s next frontier after F_{n} ([] if none), and c_{n} be the cost of the head of $F_{n}\left(\infty\right.$ if $\left.F_{n}=[]\right)$.
(i) for every $n \geq 0$ s.t. $c_{n}<c, F_{n}$ has a prefix of p

Admissibility

A^{*} is admissible (under cost, h) if it returns a solution of min cost whenever a solution exists.

3 conditions sufficient for admissibility
under-estimate: for every solution $n \cdots$ goal,

$$
0 \leq h(n) \leq \operatorname{cost}(n \cdots \text { goal })
$$

termination: for some $\epsilon>0$, every arc costs $\geq \epsilon$ finite branching: $\quad\left\{n^{\prime} \mid \operatorname{arc}\left(n, n^{\prime}\right)\right\}$ is finite for each node n

Assuming the 3 conditions above, let p be a solution.
To show: A^{*} returns a solution with min cost c.
Let $F_{0}=[$ Start $], F_{n+1}$ be A*'s next frontier after F_{n} ([] if none), and c_{n} be the cost of the head of $F_{n}\left(\infty\right.$ if $\left.F_{n}=[]\right)$.
(i) for every $n \geq 0$ s.t. $c_{n}<c, F_{n}$ has a prefix of p
(ii) $c=c_{n}$ for some n s.t. the head of F_{n} is a solution.

