
Frontier search (manage choices)

frontierSearch([Node|Rest]) :- goal(Node);

(findall(Next, arc(Node,Next), Children),

add2frontier(Children, Rest, NewFrontier),

frontierSearch(NewFrontier)).

Depth first: append(Children, Rest, NewFrontier)

Breadth-first: append(Rest, Children, NewFrontier)

For add2frontier(Children, Rest, NewFrontier), require

NewFrontier merges Children and Rest

where a list L is defined to merge lists L1 and L2 if

(a) every member of L is a member of L1 or L2

(b) every member of L1 or of L2 is a member of L.

1 / 38

Frontier search (manage choices)

frontierSearch([Node|Rest]) :- goal(Node);

(findall(Next, arc(Node,Next), Children),

add2frontier(Children, Rest, NewFrontier),

frontierSearch(NewFrontier)).

Depth first: append(Children, Rest, NewFrontier)

Breadth-first: append(Rest, Children, NewFrontier)

For add2frontier(Children, Rest, NewFrontier), require

NewFrontier merges Children and Rest

where a list L is defined to merge lists L1 and L2 if

(a) every member of L is a member of L1 or L2

(b) every member of L1 or of L2 is a member of L.

2 / 38

Frontier search (manage choices)

frontierSearch([Node|Rest]) :- goal(Node);

(findall(Next, arc(Node,Next), Children),

add2frontier(Children, Rest, NewFrontier),

frontierSearch(NewFrontier)).

Depth first: append(Children, Rest, NewFrontier)

Breadth-first: append(Rest, Children, NewFrontier)

For add2frontier(Children, Rest, NewFrontier), require

NewFrontier merges Children and Rest

where a list L is defined to merge lists L1 and L2 if

(a) every member of L is a member of L1 or L2

(b) every member of L1 or of L2 is a member of L.

3 / 38

Exercise (Prolog)

Suppose a positive integer Seed links nodes 1,2,. . . in two ways
arc(N,M,Seed) :- M is N*Seed.

arc(N,M,Seed) :- M is N*Seed +1.

e.g. Seed=3 gives arcs (1,3), (1,4), (3,9), (3, 10) . . .

Goal nodes are multiples of a positive integer Target

goal(N,Target) :- 0 is N mod Target.

e.g. Target=13 gives goals 13, 26, 39 . . .

Modify frontier search to define predicates
breadth1st(+Start, ?Found, +Seed, +Target)

depth1st(+Start, ?Found, +Seed, +Target)

that search breadth-first and depth-first respectively for a
Target-goal node Found linked to Start by Seed-arcs.

4 / 38

Exercise (Prolog)

Suppose a positive integer Seed links nodes 1,2,. . . in two ways
arc(N,M,Seed) :- M is N*Seed.

arc(N,M,Seed) :- M is N*Seed +1.

e.g. Seed=3 gives arcs (1,3), (1,4), (3,9), (3, 10) . . .

Goal nodes are multiples of a positive integer Target

goal(N,Target) :- 0 is N mod Target.

e.g. Target=13 gives goals 13, 26, 39 . . .

Modify frontier search to define predicates
breadth1st(+Start, ?Found, +Seed, +Target)

depth1st(+Start, ?Found, +Seed, +Target)

that search breadth-first and depth-first respectively for a
Target-goal node Found linked to Start by Seed-arcs.

5 / 38

Exercise (Prolog)

Suppose a positive integer Seed links nodes 1,2,. . . in two ways
arc(N,M,Seed) :- M is N*Seed.

arc(N,M,Seed) :- M is N*Seed +1.

e.g. Seed=3 gives arcs (1,3), (1,4), (3,9), (3, 10) . . .

Goal nodes are multiples of a positive integer Target

goal(N,Target) :- 0 is N mod Target.

e.g. Target=13 gives goals 13, 26, 39 . . .

Modify frontier search to define predicates
breadth1st(+Start, ?Found, +Seed, +Target)

depth1st(+Start, ?Found, +Seed, +Target)

that search breadth-first and depth-first respectively for a
Target-goal node Found linked to Start by Seed-arcs.

6 / 38

Refining frontier search

For add2frontier(Children, Rest, NewFrontier), require

NewFrontier merges Children and Rest

and for NewFrontier = [Head|Tail], ensure

Head is “no worse than” any in Tail.

What can it mean for Node1 to be no worse than Node2 ?

(A1) Node1 costs no more than Node2

 minimum cost search (= breadth-first if every arc costs 1)

(A2) Node1 is deemed no further from a goal node than Node2

 best-first search (= depth-first for heuristic ∝ depth−1)

(A3) some mix of (A1) and (A2)

 A-star

7 / 38

Refining frontier search

For add2frontier(Children, Rest, NewFrontier), require

NewFrontier merges Children and Rest

and for NewFrontier = [Head|Tail], ensure

Head is “no worse than” any in Tail.

What can it mean for Node1 to be no worse than Node2 ?

(A1) Node1 costs no more than Node2

 minimum cost search (= breadth-first if every arc costs 1)

(A2) Node1 is deemed no further from a goal node than Node2

 best-first search (= depth-first for heuristic ∝ depth−1)

(A3) some mix of (A1) and (A2)

 A-star

8 / 38

Refining frontier search

For add2frontier(Children, Rest, NewFrontier), require

NewFrontier merges Children and Rest

and for NewFrontier = [Head|Tail], ensure

Head is “no worse than” any in Tail.

What can it mean for Node1 to be no worse than Node2 ?

(A1) Node1 costs no more than Node2

 minimum cost search (= breadth-first if every arc costs 1)

(A2) Node1 is deemed no further from a goal node than Node2

 best-first search (= depth-first for heuristic ∝ depth−1)

(A3) some mix of (A1) and (A2)

 A-star

9 / 38

Refining frontier search

For add2frontier(Children, Rest, NewFrontier), require

NewFrontier merges Children and Rest

and for NewFrontier = [Head|Tail], ensure

Head is “no worse than” any in Tail.

What can it mean for Node1 to be no worse than Node2 ?

(A1) Node1 costs no more than Node2

 minimum cost search (= breadth-first if every arc costs 1)

(A2) Node1 is deemed no further from a goal node than Node2

 best-first search (= depth-first for heuristic ∝ depth−1)

(A3) some mix of (A1) and (A2)

 A-star

10 / 38

Refining frontier search

For add2frontier(Children, Rest, NewFrontier), require

NewFrontier merges Children and Rest

and for NewFrontier = [Head|Tail], ensure

Head is “no worse than” any in Tail.

What can it mean for Node1 to be no worse than Node2 ?

(A1) Node1 costs no more than Node2

 minimum cost search (= breadth-first if every arc costs 1)

(A2) Node1 is deemed no further from a goal node than Node2

 best-first search (= depth-first for heuristic ∝ depth−1)

(A3) some mix of (A1) and (A2)

 A-star

11 / 38

Refining frontier search

For add2frontier(Children, Rest, NewFrontier), require

NewFrontier merges Children and Rest

and for NewFrontier = [Head|Tail], ensure

Head is “no worse than” any in Tail.

What can it mean for Node1 to be no worse than Node2 ?

(A1) Node1 costs no more than Node2

 minimum cost search (= breadth-first if every arc costs 1)

(A2) Node1 is deemed no further from a goal node than Node2

 best-first search (= depth-first for heuristic ∝ depth−1)

(A3) some mix of (A1) and (A2)

 A-star

12 / 38

Refining frontier search

For add2frontier(Children, Rest, NewFrontier), require

NewFrontier merges Children and Rest

and for NewFrontier = [Head|Tail], ensure

Head is “no worse than” any in Tail.

What can it mean for Node1 to be no worse than Node2 ?

(A1) Node1 costs no more than Node2

 minimum cost search (= breadth-first if every arc costs 1)

(A2) Node1 is deemed no further from a goal node than Node2

 best-first search (= depth-first for heuristic ∝ depth−1)

(A3) some mix of (A1) and (A2)
 A-star

13 / 38

Arc costs (space, time, money, . . .)

arc(wa,nt,1). arc(nt,q,2).

arc(q,nsw,2). arc(wa,sa,3).

arc(nt,sa,2). arc(sa,q,3).

arc(sa,nsw,5). arc(sa,v,1).

arc(v,nsw,1).

cost(wa,nt,q,nsw) = 1 + 2 + 2 = 5

cost(x1, x2, . . . , xk+1) :=
k∑

i=1

cost(xi , xi+1)

cost(wa,sa,nsw) = 3 + 5 = 8

14 / 38

Arc costs (space, time, money, . . .)

arc(wa,nt,1). arc(nt,q,2).

arc(q,nsw,2). arc(wa,sa,3).

arc(nt,sa,2). arc(sa,q,3).

arc(sa,nsw,5). arc(sa,v,1).

arc(v,nsw,1).

cost(wa,nt,q,nsw) = 1 + 2 + 2 = 5

cost(x1, x2, . . . , xk+1) :=
k∑

i=1

cost(xi , xi+1)

cost(wa,sa,nsw) = 3 + 5 = 8

15 / 38

Arc costs (space, time, money, . . .)

arc(wa,nt,1). arc(nt,q,2).

arc(q,nsw,2). arc(wa,sa,3).

arc(nt,sa,2). arc(sa,q,3).

arc(sa,nsw,5). arc(sa,v,1).

arc(v,nsw,1).

cost(wa,nt,q,nsw) = 1 + 2 + 2 = 5

cost(x1, x2, . . . , xk+1) :=
k∑

i=1

cost(xi , xi+1)

cost(wa,sa,nsw) = 3 + 5 = 8
16 / 38

Heuristics

h(Node) = estimate the minimum cost of

a path from Node to a goal node

Examples
I Fsm accept where node = [Q,String] and every arc costs 1

h([Q, String]) = length(String)

I Prolog search where node = list of propositions to prove, and
every arc costs 1

h(List) = length(List)

I Node = point on a Euclidean plane, cost = distance between
nodes, goal is a point G

h(Node) = straight-line distance to G

I estimate assuming lots of arcs (simplifying the problem)

17 / 38

Heuristics

h(Node) = estimate the minimum cost of

a path from Node to a goal node

Examples
I Fsm accept where node = [Q,String] and every arc costs 1

h([Q, String]) = length(String)

I Prolog search where node = list of propositions to prove, and
every arc costs 1

h(List) = length(List)

I Node = point on a Euclidean plane, cost = distance between
nodes, goal is a point G

h(Node) = straight-line distance to G

I estimate assuming lots of arcs (simplifying the problem)

18 / 38

Heuristics

h(Node) = estimate the minimum cost of

a path from Node to a goal node

Examples
I Fsm accept where node = [Q,String] and every arc costs 1

h([Q, String]) = length(String)

I Prolog search where node = list of propositions to prove, and
every arc costs 1

h(List) = length(List)

I Node = point on a Euclidean plane, cost = distance between
nodes, goal is a point G

h(Node) = straight-line distance to G

I estimate assuming lots of arcs (simplifying the problem)

19 / 38

Heuristics

h(Node) = estimate the minimum cost of

a path from Node to a goal node

Examples
I Fsm accept where node = [Q,String] and every arc costs 1

h([Q, String]) = length(String)

I Prolog search where node = list of propositions to prove, and
every arc costs 1

h(List) = length(List)

I Node = point on a Euclidean plane, cost = distance between
nodes, goal is a point G

h(Node) = straight-line distance to G

I estimate assuming lots of arcs (simplifying the problem)

20 / 38

Heuristics

h(Node) = estimate the minimum cost of

a path from Node to a goal node

Examples
I Fsm accept where node = [Q,String] and every arc costs 1

h([Q, String]) = length(String)

I Prolog search where node = list of propositions to prove, and
every arc costs 1

h(List) = length(List)

I Node = point on a Euclidean plane, cost = distance between
nodes, goal is a point G

h(Node) = straight-line distance to G

I estimate assuming lots of arcs (simplifying the problem)
21 / 38

Best-first search
Form NewFrontier = [Head|Tail] such that

h(Head) ≤ h(Node) for every Node in Tail

g

s

Poole & Mackworth

22 / 38

http://artint.info/html/ArtInt.html

Best-first search
Form NewFrontier = [Head|Tail] such that

h(Head) ≤ h(Node) for every Node in Tail

g

s

Poole & Mackworth

23 / 38

http://artint.info/html/ArtInt.html

Min-cost

6= breadth-first

cost(n1 · · · nk) =∑k−1
i=1 cost(ni , ni+1)

cost(wa nt q nsw) = 5
cost(wa sa nsw) = 8

add2frontier(Children, Rest, [Head|Tail])

cost(Start· · · Head) ≤ cost(Start· · · n) for each n in Tail ?

I node path or pair (n,cost(Start· · · n))

I what about proximity to goal?

h(n) = estimate of min cost path n · · · goal

24 / 38

Min-cost 6= breadth-first

cost(n1 · · · nk) =∑k−1
i=1 cost(ni , ni+1)

cost(wa nt q nsw) = 5
cost(wa sa nsw) = 8

add2frontier(Children, Rest, [Head|Tail])

cost(Start· · · Head) ≤ cost(Start· · · n) for each n in Tail ?

I node path or pair (n,cost(Start· · · n))

I what about proximity to goal?

h(n) = estimate of min cost path n · · · goal

25 / 38

Min-cost 6= breadth-first

cost(n1 · · · nk) =∑k−1
i=1 cost(ni , ni+1)

cost(wa nt q nsw) = 5
cost(wa sa nsw) = 8

add2frontier(Children, Rest, [Head|Tail])

cost(Start· · · Head) ≤ cost(Start· · · n) for each n in Tail ?

I node path or pair (n,cost(Start· · · n))

I what about proximity to goal?

h(n) = estimate of min cost path n · · · goal

26 / 38

Min-cost 6= breadth-first

cost(n1 · · · nk) =∑k−1
i=1 cost(ni , ni+1)

cost(wa nt q nsw) = 5
cost(wa sa nsw) = 8

add2frontier(Children, Rest, [Head|Tail])

cost(Start· · · Head) ≤ cost(Start· · · n) for each n in Tail ?

I node path

or pair (n,cost(Start· · · n))

I what about proximity to goal?

h(n) = estimate of min cost path n · · · goal

27 / 38

Min-cost 6= breadth-first

cost(n1 · · · nk) =∑k−1
i=1 cost(ni , ni+1)

cost(wa nt q nsw) = 5
cost(wa sa nsw) = 8

add2frontier(Children, Rest, [Head|Tail])

cost(Start· · · Head) ≤ cost(Start· · · n) for each n in Tail ?

I node path or pair (n,cost(Start· · · n))

I what about proximity to goal?

h(n) = estimate of min cost path n · · · goal

28 / 38

Min-cost 6= breadth-first

cost(n1 · · · nk) =∑k−1
i=1 cost(ni , ni+1)

cost(wa nt q nsw) = 5
cost(wa sa nsw) = 8

add2frontier(Children, Rest, [Head|Tail])

cost(Start· · · Head) ≤ cost(Start· · · n) for each n in Tail ?

I node path or pair (n,cost(Start· · · n))

I what about proximity to goal?

h(n) = estimate of min cost path n · · · goal
29 / 38

A∗
ends of
paths on
frontier

explored nodes

unexplored nodes

start
node

solution = start · · · n︸ ︷︷ ︸ · · · goal

explored

f (start· · · n) = cost(start· · · n)
+h(n)

Ensure Frontier = [Head|Tail] where Head has minimal f

I h(n) = 0 for every n min-cost

I cost(start· · · n) =0 for every n best-first
(disregarding the past)

30 / 38

A∗
ends of
paths on
frontier

explored nodes

unexplored nodes

start
node

solution = start · · · n︸ ︷︷ ︸ · · · goal

explored

f (start· · · n) = cost(start· · · n)
+h(n)

Ensure Frontier = [Head|Tail] where Head has minimal f

I h(n) = 0 for every n min-cost

I cost(start· · · n) =0 for every n best-first
(disregarding the past)

31 / 38

Admissibility
A∗ is admissible (under cost, h) if it returns a solution of min cost

whenever a solution exists.

3 conditions sufficient for admissibility

under-estimate: for every solution n · · · goal,
0 ≤ h(n) ≤ cost(n · · · goal)

termination: for some ε > 0, every arc costs ≥ ε
finite branching: {n′ | arc(n, n′)} is finite for each node n

Assuming the 3 conditions above, let p be a solution.

To show: A∗ returns a solution with min cost c .

Let F0 =[Start], Fn+1 be A∗’s next frontier after Fn ([] if none),
and cn be the cost of the head of Fn (∞ if Fn = []).

(i) for every n ≥ 0 s.t. cn < c , Fn has a prefix of p

(ii) c = cn for some n s.t. the head of Fn is a solution.

32 / 38

Admissibility
A∗ is admissible (under cost, h) if it returns a solution of min cost

whenever a solution exists.

3 conditions sufficient for admissibility

under-estimate: for every solution n · · · goal,
0 ≤ h(n) ≤ cost(n · · · goal)

termination: for some ε > 0, every arc costs ≥ ε
finite branching: {n′ | arc(n, n′)} is finite for each node n

Assuming the 3 conditions above, let p be a solution.

To show: A∗ returns a solution with min cost c .

Let F0 =[Start], Fn+1 be A∗’s next frontier after Fn ([] if none),
and cn be the cost of the head of Fn (∞ if Fn = []).

(i) for every n ≥ 0 s.t. cn < c , Fn has a prefix of p

(ii) c = cn for some n s.t. the head of Fn is a solution.

33 / 38

Admissibility
A∗ is admissible (under cost, h) if it returns a solution of min cost

whenever a solution exists.

3 conditions sufficient for admissibility

under-estimate: for every solution n · · · goal,
0 ≤ h(n) ≤ cost(n · · · goal)

termination: for some ε > 0, every arc costs ≥ ε
finite branching: {n′ | arc(n, n′)} is finite for each node n

Assuming the 3 conditions above, let p be a solution.

To show: A∗ returns a solution with min cost c .

Let F0 =[Start], Fn+1 be A∗’s next frontier after Fn ([] if none),
and cn be the cost of the head of Fn (∞ if Fn = []).

(i) for every n ≥ 0 s.t. cn < c , Fn has a prefix of p

(ii) c = cn for some n s.t. the head of Fn is a solution.

34 / 38

Admissibility
A∗ is admissible (under cost, h) if it returns a solution of min cost

whenever a solution exists.

3 conditions sufficient for admissibility

under-estimate: for every solution n · · · goal,
0 ≤ h(n) ≤ cost(n · · · goal)

termination: for some ε > 0, every arc costs ≥ ε
finite branching: {n′ | arc(n, n′)} is finite for each node n

Assuming the 3 conditions above, let p be a solution.

To show: A∗ returns a solution with min cost c .

Let F0 =[Start], Fn+1 be A∗’s next frontier after Fn ([] if none),
and cn be the cost of the head of Fn (∞ if Fn = []).

(i) for every n ≥ 0 s.t. cn < c , Fn has a prefix of p

(ii) c = cn for some n s.t. the head of Fn is a solution.

35 / 38

Admissibility
A∗ is admissible (under cost, h) if it returns a solution of min cost

whenever a solution exists.

3 conditions sufficient for admissibility

under-estimate: for every solution n · · · goal,
0 ≤ h(n) ≤ cost(n · · · goal)

termination: for some ε > 0, every arc costs ≥ ε
finite branching: {n′ | arc(n, n′)} is finite for each node n

Assuming the 3 conditions above, let p be a solution.

To show: A∗ returns a solution with min cost c .

Let F0 =[Start], Fn+1 be A∗’s next frontier after Fn ([] if none),
and cn be the cost of the head of Fn (∞ if Fn = []).

(i) for every n ≥ 0 s.t. cn < c , Fn has a prefix of p

(ii) c = cn for some n s.t. the head of Fn is a solution.

36 / 38

Admissibility
A∗ is admissible (under cost, h) if it returns a solution of min cost

whenever a solution exists.

3 conditions sufficient for admissibility

under-estimate: for every solution n · · · goal,
0 ≤ h(n) ≤ cost(n · · · goal)

termination: for some ε > 0, every arc costs ≥ ε
finite branching: {n′ | arc(n, n′)} is finite for each node n

Assuming the 3 conditions above, let p be a solution.

To show: A∗ returns a solution with min cost c .

Let F0 =[Start], Fn+1 be A∗’s next frontier after Fn ([] if none),
and cn be the cost of the head of Fn (∞ if Fn = []).

(i) for every n ≥ 0 s.t. cn < c , Fn has a prefix of p

(ii) c = cn for some n s.t. the head of Fn is a solution.

37 / 38

Admissibility
A∗ is admissible (under cost, h) if it returns a solution of min cost

whenever a solution exists.

3 conditions sufficient for admissibility

under-estimate: for every solution n · · · goal,
0 ≤ h(n) ≤ cost(n · · · goal)

termination: for some ε > 0, every arc costs ≥ ε
finite branching: {n′ | arc(n, n′)} is finite for each node n

Assuming the 3 conditions above, let p be a solution.

To show: A∗ returns a solution with min cost c .

Let F0 =[Start], Fn+1 be A∗’s next frontier after Fn ([] if none),
and cn be the cost of the head of Fn (∞ if Fn = []).

(i) for every n ≥ 0 s.t. cn < c , Fn has a prefix of p

(ii) c = cn for some n s.t. the head of Fn is a solution.

38 / 38

