These slides are adapted from Poole & Mackworth, chap 9

From a Constraint Satisfaction Problem [Var,Dom,Con] to
random variables with probabilities constrained by a graph

@ The domain (range) of a variable X, written Dom(X), is the
set of (possible) values X can take.
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These slides are adapted from Poole & Mackworth, chap 9

From a Constraint Satisfaction Problem [Var,Dom,Con] to
random variables with probabilities constrained by a graph

@ The domain (range) of a variable X, written Dom(X), is the
set of (possible) values X can take.

@ A proposition « is an equation X = x between a variable X
and a value x € Dom(X), or a Boolean combination of such.

2/73



These slides are adapted from Poole & Mackworth, chap 9

From a Constraint Satisfaction Problem [Var,Dom,Con] to
random variables with probabilities constrained by a graph

@ The domain (range) of a variable X, written Dom(X), is the

set of (possible) values X can take.

@ A proposition « is an equation X = x between a variable X
and a value x € Dom(X), or a Boolean combination of such.

@ A proposition « is assigned a probability through

> a notion = of a possible world w satisfying «, and
» a measure u for weighing a set of possible worlds.
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Satisfaction, measure and probability

Fix a set €2 of possible worlds w that assign a value to each
random variable, and interpret a proposition via =

wkEX=x <= w assigns X the value x

wEaANf <= wkEaandwEpf
wEaVp <= wkaorwEp
wkEa = wla
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Satisfaction, measure and probability

Fix a set €2 of possible worlds w that assign a value to each
random variable, and interpret a proposition via =

wkEX=x <= w assigns X the value x
wkEaNpf <= wEaandwlEp
wkEaVp <<= wkEaorwkE/p
wEa = wla
For finite €, a probability measure is a function
p: Pow(Q2) — [0, 1]
such that p(€2) = 1 and for any subset S of €,

u(S) = 3 nlfeh).

weS
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Satisfaction, measure and probability

Fix a set €2 of possible worlds w that assign a value to each
random variable, and interpret a proposition via =

wkEX=x <= w assigns X the value x
wEaANf <= wkEaandwEpf
wEaVp <= wkaowkEp
wkEa = wla
For finite €, a probability measure is a function
p: Pow(Q2) — [0, 1]
such that p(€2) = 1 and for any subset S of €,
w(S) = n({w}).
weS

Given p, a proposition « has probability

Pla) = p({w |w = a}).
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Tuples, distributions and the sum rule

A tuple Xi,..., X, of random variables is a random variable with
domain
Dom(X1) x - -+ x Dom(Xp,).
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Tuples, distributions and the sum rule

A tuple Xi,..., X, of random variables is a random variable with
domain
Dom(X1) x - -+ x Dom(Xp,).

A probability distribution on a random variable X is a function
Px : Dom(X) — [0,1] s.t.

Px(x) = P(X = x).

Px is often written as P(X), and Px(x) as P(x).
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Tuples, distributions and the sum rule

A tuple Xi,..., X, of random variables is a random variable with
domain
Dom(X1) x - -+ x Dom(Xp,).

A probability distribution on a random variable X is a function
Px : Dom(X) — [0,1] s.t.

Px(x) = P(X = x).

Px is often written as P(X), and Px(x) as P(x).

sumrule  P(X) = Z P(X.,Y)
Y

Px(x) = Z Px.y(x,y) for x € Dom(X)
y€Dom(Y)
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sum rule P(X) =3y P(X,Y) =Y, P(X,Y =y)

Px(x) = Z Px.y(x,y) for x € Dom(X)
y€Dom(Y)
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sum rule P(X) =3y P(X,Y) =Y, P(X,Y =y)

Px(x) = Z Px.y(x,y) for x € Dom(X)
y€Dom(Y)

y€Dom(Y)
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sum rule P(X) =3y P(X,Y) =Y, P(X,Y =y)

Px(x) = Z Px.y(x,y) for x € Dom(X)
y€Dom(Y)

PX=x)= > PX=xAY=y)
y€Dom(Y)

lweQluEX=x})= > wlwveQloEX=xAY=y})
y€Dom(Y)
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sum rule P(X) =3y P(X,Y) =Y, P(X,Y =y)

Px(x) = Z Px.y(x,y) for x € Dom(X)

y€Dom(Y)
PX=x)= > PX=xAY=y)
y€Dom(Y)
plweQlukEX=x)= Y ulweQ|wkEX=xAY=y})
y€Dom(Y)

p{lweQlwX)=x})= >  p({weQ|w(X)=xand
y€Dom(Y)

w(Y)=y})
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sum rule P(X) =3y P(X,Y) =Y, P(X,Y =y)

Px(x) = Z Px.y(x,y) for x € Dom(X)

y€Dom(Y)
PX=x)= > PX=xAY=y)
y€Dom(Y)
plweQlukEX=x)= Y ulweQ|wkEX=xAY=y})
y€Dom(Y)

p{lweQlwX)=x})= >  p({weQ|w(X)=xand
y€Dom(Y)

w(Y)=y})

From additivity of u (for finite Q)

w(S) = Y nw})

weS
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Joint probability from a table

yi Y2 tee Ye
x1 | P(xt,y1) P(xi,y2) - P(x1,yc)
x2 | PO,y1) Plxa,y2) -+ Plx,ye)
xr | P(xrsy1)  P(xr,y2)  --- P(xr,¥e)
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Joint probability from a table

. yi Y2 ce Ye
margin x1 | P(xt,y1) P(xi,y2) - P(x1,yc)
x2 | P(x2,y1) P(x2,y2) -+ P(x,yc)
P(xi) = .
>, P(xi,y) :
g xr | P(xrsy1)  P(xr,y2)  --- P(xr,¥e)

Wikipedia on Marginal distribution

Marginal variables are those variables in the subset of
variables being retained. These concepts are “marginal”
because they can be found by summing values in a table
along rows or columns, and writing the sum in the margins
of the table.
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Sum rule as marginalisation
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Sum rule as marginalisation

joint probability P(X, Y)
P(X) = > P(X,Y)
Y
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Sum rule as marginalisation

joint probability P(X, Y)
P(X) = > P(X,Y)
Y

marginal probability P(X)
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Sum rule as marginalisation

joint probability P(X, Y)
P(X) = > P(X,Y)
Y

marginal probability P(X) marginalising out Y
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Sum rule as marginalisation

joint probability P(X, Y)
P(X) = > P(X,Y)
Y

marginal probability P(X) marginalising out Y

~ eliminating Y
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Sum rule as marginalisation
joint probability P(X, Y)
P(X) = ) P(X.Y)
Y

marginal probability P(X) marginalising out Y
~ eliminating Y

nuisance variable Y
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Sum rule as marginalisation

joint probability P(X, Y)
P(X) = > _P(X.Y)
Y
marginal probability P(X) marginalising out Y
~ eliminating Y

nuisance variable Y
We'll define P(X|Y) so that

P(X) = expected value of P(X|Y) over Y
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Sum rule as marginalisation

joint probability P(X, Y)
P(X) = > _P(X.Y)
Y
marginal probability P(X) marginalising out Y
~ eliminating Y

nuisance variable Y
We'll define P(X|Y) so that

P(X) = expected value of P(X|Y) over Y
= Y PXIY)P(Y)
%
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Sum rule as marginalisation

joint probability P(X, Y)
P(X) = > _P(X.Y)
Y
marginal probability P(X) marginalising out Y
~ eliminating Y

nuisance variable Y
We'll define P(X|Y) so that

P(X) = expected value of P(X|Y) over Y
= Y PXIY)P(Y)
%

P(x) = > P(xly)P(y)

= Ey[P(x|y)]
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Conditional probability

To incorporate a proposition « into the background assumptions,
we restrict the set Q of possible worlds to

Qla = {we|wka}
and assuming p(Q2 [ ) # 0, map a subset S C Q[ a to

arey . H(S)
HAS) = n(Qla)

for a probability measure u® : Pow(Q2[a) — [0,1] on Q[ c.
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Conditional probability

To incorporate a proposition « into the background assumptions,
we restrict the set Q of possible worlds to

Qla = {we|wka}
and assuming p(Q2 [ ) # 0, map a subset S C Q[ a to

orey . (S)
HAS) = n(Qla)

for a probability measure u® : Pow(Q2[a) — [0,1] on Q[ c.

The conditional probability of o/ given a is

P(d' A @)

P |a) = pu*(Qld Na) = (o)
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The product rule and Bayes' theorem
product rule  P(X,Y) = P(X|Y)P(Y)

Px.y(x,y) = Px(x|Y = y)Py(y)
for x € Dom(X), y € Dom(Y)
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The product rule and Bayes' theorem

product rule  P(X,Y) = P(X|Y)P(Y)

Px.y(x,y) = Px(x|Y = y)Py(y)
for x € Dom(X), y € Dom(Y)

As conjunction is commutative (2 [/ Aa=Qa Ad'),
P(X,Y)=P(Y,X)

and so the product rule yields

P(Y[X)P(X)

Bayes' theorem  P(X]Y) = P(Y)

if P(Y)#0
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The product rule and Bayes' theorem

product rule  P(X,Y) = P(X|Y)P(Y)

Px.y(x,y) = Px(x|Y = y)Py(y)
for x € Dom(X), y € Dom(Y)

As conjunction is commutative (2 [/ Aa=Qa Ad'),
P(X,Y)=P(Y,X)

and so the product rule yields

P(Y[X)P(X)

Bayes' theorem  P(X]Y) = P(Y)

if P(Y)#0

The prior probability of «

Pla) = u(Q2la)
is updated by «, to the posterior probability given as
Plafas) = p*(Q(a A as))
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Why is Bayes' theorem interesting?

Form a hypothesis h given evidence e with P(e) # 0 via Bayes

P(elh)P(h)
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Why is Bayes' theorem interesting?

Form a hypothesis h given evidence e with P(e) # 0 via Bayes

P(elh)P(h
SURELCLLU
We often have causal knowledge

P(symptom | disease), P(alarm | fire)

P(image = - | a tree is in front of a car)
but want to do evidential reasoning

P(disease | symptom), P(fire | alarm)

P(a tree is in front of a car | image = :)
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Tuples and the chain rule

Recall: a tuple Xi, ..., X, of random variables is a random variable.

Let us write
Xl;,, for Xl, . ,X,,
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Tuples and the chain rule

Recall: a tuple Xi, ..., X, of random variables is a random variable.

Let us write
Xl;,, for Xl, . ,X,,

and apply the product rule repeatedly for

'D(Xlzn) — P(Xn|X1:n—1)P(X1:n—1)
= P(Xn‘Xl:n—l)P(Xn—l ’XI:n—2)P(X1:n—2)

= HP(XI | X1:;—1) chain rule
i=1

with Xi.o as the empty tuple and P(X; | X1.0) = P(X1).
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Simplifying the chain rule via conditional independence
Choose a sub-tuple parents(X;) of Xi.;—1 such that

P(Xi| X1.i—1) = P(X;|parents(X;)) .
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Simplifying the chain rule via conditional independence
Choose a sub-tuple parents(X;) of Xi.;—1 such that

P(Xi| X1.i—1) = P(X;|parents(X;)) .

X is independent of Y given Z, written X 1L Y | Z,

P(X|Y,Z)=P(X|2)
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Simplifying the chain rule via conditional independence
Choose a sub-tuple parents(X;) of Xi.j—1 such that

P(Xi| X1.i—1) = P(X;|parents(X;)) .
X is independent of Y given Z, written X 1L Y | Z,
P(X1Y,Z) = P(X]2)
i.e. for all x € Dom(X), y € Dom(Y), and z € Dom(Z),
PX=x|Y=yNZ=2z) = PX=x|Z=2)

— knowing Y's value says nothing about X's value, given Z’s value.
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Simplifying the chain rule via conditional independence
Choose a sub-tuple parents(X;) of Xi.j—1 such that

P(Xi| X1.i—1) = P(X;|parents(X;)) .

X is independent of Y given Z, written X 1L Y | Z,
P(X|Y,Z)=P(X|2)
i.e. for all x € Dom(X), y € Dom(Y), and z € Dom(Z),
PX=x|Y=yNZ=2z) = PX=x|Z=2)
— knowing Y's value says nothing about X's value, given Z’s value.
Note

XULY|Z < PX,Y|Z) = P(X|2)P(Y|2)
— YUX|Z
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Totally order the variables of interest
X1 < Xo <o < X,
and for each i from 1 to n, choose parents(X;) from Xi.;_1 s.t.

P(X;| X1.i—1) = P(X;| parents(X;)) (1)
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Belief networks

Totally order the variables of interest
X1 < Xo <o < X,
and for each i from 1 to n, choose parents(X;) from Xi.;_1 s.t.
P(Xi| Xuii1) = P(X;| parents(X))) (+)

A belief network consists of:

@ a directed acyclic graph with nodes = random variables, and
an arc from the parents of each node into that node

@ a domain for each random variable

@ conditional probability tables for each variable given its
parents (for a probability distribution respecting (1))
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Example: Markov chain

A Markov chain is a special sort of belief network:

OO nsOniOne®

What probabilities need to be specified?
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Example: Markov chain

A Markov chain is a special sort of belief network:

OO nsOniOne®

What probabilities need to be specified?
@ P(Sp) specifies initial conditions

® P(St4+1|St) specifies the dynamics
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Example: Markov chain

A Markov chain is a special sort of belief network:

OO nsOniOne®

What probabilities need to be specified?

e P(Sp) specifies initial conditions

® P(St4+1|St) specifies the dynamics
What independence assumptions are made?

P(5t+1‘50:t) = P(St—&-l‘st)

S; represents the state at time t, capturing everything about
the past (< t) that can affect the future (> t)

The future is independent of the past given the present.
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Two elaborations
In a stationary Markov chain,

Dom(S;) = Dom(Sy) and P(Si4+1]Si) = P(51]So) for all i >0

so it is enough to specify P(Sp) and P(51|Sp).
@ Simple model, easy to specify
@ The network can extend indefinitely
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Two elaborations
In a stationary Markov chain,

Dom(S;) = Dom(Sy) and P(Si4+1]Si) = P(51]So) for all i >0

so it is enough to specify P(So) and P(51|50).
@ Simple model, easy to specify
@ The network can extend indefinitely

A Hidden Markov Model (HMM) is a belief network of the form

LLaE

e P(5) speC|f|es |n|t|aI conditions
@ P(S5i+1]Si) specifies the dynamics
e P(Oi|S;) specifies the sensor model
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Naive Bayes Classifier
Problem: classify on the basis of features F;
P(F1.n|Class)P(Class)
P(Fi.n)

P(Class|F1.n) =
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Naive Bayes Classifier
Problem: classify on the basis of features F;

P(Fi.n| Class)P(Class)

P(Class|F1.n) = P(Fin)

Assume F; are independent of each other given Class

P(F1:n|Class) = HP(F,-|C/ass)
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Naive Bayes Classifier
Problem: classify on the basis of features F;

P(F1.n|Class)P(Class)
P(Flzn)
Assume F; are independent of each other given Class

P(Fy.p|Class) = HP(F,-|CIass)

P(Class|F1.n) =

& E®®®

Assume the values of features F; are predictable given a class.

Requires P(Class) and P(F;|Class) for each F;

48/73



Learning Probabilities

FR F, F3 Fis C| Count
f 1 40
f 2 10
f t 3 50
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https://en.wikipedia.org/wiki/Cromwell's_rule

Learning Probabilities

FR F, F3 Fis C| Count

f 2 10

S Count(w)
> ., Count(w)

Zw):C:c/\Fk:b Count(w)
Zw]:C:c Count(w)

P(C=c) =

P(Fk = b’C:C) =

with pseudo-counts (Cromwell's rule)
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https://en.wikipedia.org/wiki/Cromwell's_rule

Help System

@ The domain of H is the set of all help pages.
The observations are the words in the query.

@ What probabilities are needed?
What pseudo-counts and counts are used?
What data can be used to learn from?
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Constructing a belief network

To represent a domain in a belief network, we need to consider:
@ What are the relevant variables?

» What will you observe?
» What would you like to find out (query)?
» What other features make the model simpler?

@ What values should these variables take?

@ What is the relationship between them?
Express this in terms of a directed graph, representing how
each variable X; is generated from its predecessors Xi.;_1.

The parents of X are variables on which X directly depends
» X is independent of its non-descendants given its parents.

@ How does the value of each variable depend on its parents?
This is expressed in terms of the conditional probabilities.
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Example: fire alarm belief network

Variables:

Fire: there is a fire in the building
Tampering: someone has been tampering with the fire alarm

Smoke: what appears to be smoke is coming from an upstairs
window

Alarm: the fire alarm goes off
Leaving: people are leaving the building en masse.

Report: a colleague says that people are leaving the building
en masse. (A noisy sensor for leaving.)
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Head-to-tail: Chain

I @ alarm and report are
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Head-to-tail: Chain
@ alarm and report are
dependent
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Head-to-tail: Chain
@ alarm and report are
dependent
@ alarm and report are

given
@ leaving

56 /73



Head-to-tail: Chain
@ alarm and report are
dependent
@ alarm and report are

independent given
@ leaving
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Head-to-tail: Chain

@ alarm and report are
dependent
@ alarm and report are
independent given

@ leaving

@ Intuitively, the only way
that the alarm affects

@ report is by affecting
leaving.
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Head-to-tail: Chain

@ alarm and report are
dependent
@ alarm and report are
independent given

@ leaving

@ Intuitively, the only way
that the alarm affects

@ report is by affecting
leaving.

P(report, alarm, leaving)

P(report, alarm | leaving) =

P(leaving)
_ P(alarm)P(leaving | alarm)P(report | leaving) net
B P(leaving)
P(alarm, leavi .
= (a:(rlr:a\liiagv)lng) P(report | leaving) product
= P(alarm | leaving)P(report | leaving) for 1L
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Tail-to-tail: Common ancestors

@ alarm and smoke are
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Tail-to-tail: Common ancestors

@ alarm and smoke are
dependent
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Tail-to-tail: Common ancestors
@ alarm and smoke are

dependent

@ alarm and smoke are
@ given fire
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Tail-to-tail: Common ancestors
@ alarm and smoke are

dependent

@ alarm and smoke are
@ independent given fire
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Tail-to-tail: Common ancestors
@ alarm and smoke are

dependent

@ alarm and smoke are
@ independent given fire
@ Intuitively, fire can

explain alarm and smoke;
learning one can affect

@ @ the other by changing
your belief in fire.
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Tail-to-tail: Common ancestors
@ alarm and smoke are

dependent

@ alarm and smoke are
@ independent given fire
@ Intuitively, fire can

explain alarm and smoke;
learning one can affect

@ @ the other by changing
your belief in fire.
smoke Ll alarm | fire
P(smoke, alarm, fire)
P(fire)
P(fire)P(alarm | fire) P(smoke | fire)
P(fire)
= P(alarm | fire)P(smoke | fire) for AL

P(smoke, alarm | fire) =
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Head-to-head: Common descendants

tampering @ e tampering and fire are
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Head-to-head: Common descendants

tampering @ e tampering and fire are
independent
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Head-to-head: Common descendants

tampering @ e tampering and fire are
independent

@ tampering and fire are
given alarm
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Head-to-head: Common descendants

tampering @ e tampering and fire are
independent

@ tampering and fire are
dependent given alarm
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Head-to-head: Common descendants

tampering @ e tampering and fire are

independent

@ tampering and fire are
dependent given alarm

@ o Intuitively, tampering

can explain away fire
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Head-to-head: Common descendants

tampering @ e tampering and fire are

independent

@ tampering and fire are
dependent given alarm

@ o Intuitively, tampering

can explain away fire
P(fi=1|am=1)>P(fi=1]|am=1Atg=1)

for  P(tg=0)=0.9 P(fi=0)=0.9
Plam=1|tg=1Afi=1)=0.95
Plam=1|tg=1Afi=0)=05
Plam=1|tg=0Afi=1)=0.9
Plam=1|tg=0Afi=0)=0.1
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P(fi=1lam =1) ~ 0.418

P(am = 1|fi = 1)P(fi = 1)

P(fi=1lam =1) = Plam = 1)

Bayes

Plam=1|fi=1) = Y P(am = 1, tglfi = 1) sum
tg
P(am = 1|tg,fi = 1) P(tgl|fi=1) product
—_—

P(tg) net

Plam=1) = ZZ P(am =1, tg, fi) sum

tg  fi
P(tg)P(fi)P(am = 1|tg, fi) net
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P(fi=1lam =1,tg=1) ~ 0.174

P(fi=1) net

P(am = 1|fi=1,tg =1) P(fi=1jtg = 1)
P(am=1ftg =1)

P(fi=1llam=1tg=1) =

Bayes

P(am=1jtg=1) = Z P(am =1, fijtg = 1) sum
fi
P(am = 1|fi,tg = 1) P(filtg = 1) product
—_——

P(fi) net
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