
These slides are adapted from Poole & Mackworth, chap 9

From a Constraint Satisfaction Problem [Var,Dom,Con] to
random variables with probabilities constrained by a graph

The domain (range) of a variable X , written Dom(X ), is the
set of (possible) values X can take.

A proposition α is an equation X = x between a variable X
and a value x ∈ Dom(X ), or a Boolean combination of such.

A proposition α is assigned a probability through
I a notion |= of a possible world ω satisfying α, and
I a measure µ for weighing a set of possible worlds.
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Satisfaction, measure and probability
Fix a set Ω of possible worlds ω that assign a value to each
random variable, and interpret a proposition via |=

ω |= X = x ⇐⇒ ω assigns X the value x

ω |= α ∧ β ⇐⇒ ω |= α and ω |= β

ω |= α ∨ β ⇐⇒ ω |= α or ω |= β

ω |= ¬α ⇐⇒ ω 6|= α.

For finite Ω, a probability measure is a function

µ : Pow(Ω)→ [0, 1]

such that µ(Ω) = 1 and for any subset S of Ω,

µ(S) =
∑
ω∈S

µ({ω}).

Given µ, a proposition α has probability

P(α) = µ({ω | ω |= α}).
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Tuples, distributions and the sum rule
A tuple X1, . . . ,Xn of random variables is a random variable with
domain

Dom(X1)× · · · × Dom(Xn).

A probability distribution on a random variable X is a function
PX : Dom(X )→ [0, 1] s.t.

PX (x) = P(X = x).

PX is often written as P(X ), and PX (x) as P(x).

sum rule P(X ) =
∑

Y

P(X ,Y )

PX (x) =
∑

y∈Dom(Y )

PX ,Y (x , y) for x ∈ Dom(X )
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sum rule P(X ) =
∑

Y P(X ,Y ) =
∑

y P(X ,Y = y)

PX (x) =
∑

y∈Dom(Y )

PX ,Y (x , y) for x ∈ Dom(X )

P(X = x) =
∑

y∈Dom(Y )

P(X = x ∧ Y = y)

µ({ω ∈ Ω | ω |= X = x}) =
∑

y∈Dom(Y )

µ({ω ∈ Ω | ω |= X = x ∧ Y = y})

µ({ω ∈ Ω | ω(X ) = x}) =
∑

y∈Dom(Y )

µ({ω ∈ Ω | ω(X ) = x and

ω(Y ) = y})

From additivity of µ (for finite Ω)

µ(S) =
∑
ω∈S

µ({ω})
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Joint probability from a table

margin

P(xi ) =∑
y P(xi , y)

y1 y2 · · · yc

x1 P(x1, y1) P(x1, y2) · · · P(x1, yc )
x2 P(x2, y1) P(x2, y2) · · · P(x2, yc )
...

xr P(xr , y1) P(xr , y2) · · · P(xr , yc )

Wikipedia on Marginal distribution

Marginal variables are those variables in the subset of
variables being retained. These concepts are “marginal”
because they can be found by summing values in a table
along rows or columns, and writing the sum in the margins
of the table.

15 / 73



Joint probability from a table

margin

P(xi ) =∑
y P(xi , y)

y1 y2 · · · yc

x1 P(x1, y1) P(x1, y2) · · · P(x1, yc )
x2 P(x2, y1) P(x2, y2) · · · P(x2, yc )
...

xr P(xr , y1) P(xr , y2) · · · P(xr , yc )

Wikipedia on Marginal distribution

Marginal variables are those variables in the subset of
variables being retained. These concepts are “marginal”
because they can be found by summing values in a table
along rows or columns, and writing the sum in the margins
of the table.

16 / 73



Sum rule as marginalisation

joint probability P(X ,Y )

P(X ) =
∑

Y

P(X ,Y )

marginal probability P(X ) marginalising out Y

≈ eliminating Y

nuisance variable Y

We’ll define P(X |Y ) so that

P(X ) = expected value of P(X |Y ) over Y

=
∑

Y

P(X |Y )P(Y )

P(x) =
∑

y

P(x |y)P(y)

= Ey [P(x |y)]
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Conditional probability

To incorporate a proposition α into the background assumptions,
we restrict the set Ω of possible worlds to

Ω�α := {ω ∈ Ω | ω |= α}

and assuming µ(Ω�α) 6= 0, map a subset S ⊆ Ω�α to

µα(S) :=
µ(S)

µ(Ω�α)

for a probability measure µα : Pow(Ω�α)→ [0, 1] on Ω�α.

The conditional probability of α′ given α is

P(α′ |α) := µα(Ω�α′ ∧ α) =
P(α′ ∧ α)

P(α)
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The product rule and Bayes’ theorem

product rule P(X ,Y ) = P(X |Y )P(Y )

PX ,Y (x , y) = PX (x |Y = y)PY (y)

for x ∈ Dom(X ), y ∈ Dom(Y )

As conjunction is commutative (Ω�α′ ∧ α = Ω�α ∧ α′),

P(X ,Y ) = P(Y ,X )

and so the product rule yields

Bayes’ theorem P(X |Y ) =
P(Y |X )P(X )

P(Y )
if P(Y ) 6= 0

The prior probability of α

P(α) = µ(Ω�α)

is updated by α◦ to the posterior probability given α◦

P(α |α◦) = µα◦(Ω�(α ∧ α◦))
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Why is Bayes’ theorem interesting?

Form a hypothesis h given evidence e with P(e) 6= 0 via Bayes

P(h|e) =
P(e|h)P(h)

P(e)
.

We often have causal knowledge

P(symptom | disease), P(alarm | fire)

P(image = | a tree is in front of a car)

but want to do evidential reasoning

P(disease | symptom), P(fire | alarm)

P(a tree is in front of a car | image = )
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Tuples and the chain rule

Recall: a tuple X1, . . . ,Xn of random variables is a random variable.

Let us write
X1:n for X1, . . . ,Xn

and apply the product rule repeatedly for

P(X1:n) = P(Xn |X1:n−1)P(X1:n−1)

= P(Xn |X1:n−1)P(Xn−1 |X1:n−2)P(X1:n−2)

= · · ·

=
n∏

i=1

P(Xi |X1:i−1) chain rule

with X1:0 as the empty tuple and P(X1 |X1:0) = P(X1).
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Simplifying the chain rule via conditional independence
Choose a sub-tuple parents(Xi ) of X1:i−1 such that

P(Xi |X1:i−1) = P(Xi | parents(Xi )) .

X is independent of Y given Z , written X ⊥⊥ Y | Z ,

P(X |Y ,Z ) = P(X |Z )

i.e. for all x ∈ Dom(X ), y ∈ Dom(Y ), and z ∈ Dom(Z ),

P(X = x | Y = y ∧ Z = z) = P(X = x | Z = z)

— knowing Y ’s value says nothing about X ’s value, given Z ’s value.

Note

X ⊥⊥ Y | Z ⇐⇒ P(X ,Y |Z ) = P(X |Z )P(Y |Z )

⇐⇒ Y ⊥⊥ X | Z
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Belief networks

Totally order the variables of interest

X1 < X2 < · · · < Xn

and for each i from 1 to n, choose parents(Xi ) from X1:i−1 s.t.

P(Xi |X1:i−1) = P(Xi | parents(Xi )) (†)

A belief network consists of:

a directed acyclic graph with nodes = random variables, and
an arc from the parents of each node into that node

a domain for each random variable

conditional probability tables for each variable given its
parents (for a probability distribution respecting (†))
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Example: Markov chain

A Markov chain is a special sort of belief network:

S0 S1 S2 S3 S4

What probabilities need to be specified?

P(S0) specifies initial conditions

P(St+1|St) specifies the dynamics

What independence assumptions are made?

P(St+1|S0:t) = P(St+1|St)

St represents the state at time t, capturing everything about
the past (< t) that can affect the future (> t)

The future is independent of the past given the present.
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St represents the state at time t, capturing everything about
the past (< t) that can affect the future (> t)

The future is independent of the past given the present.
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Two elaborations
In a stationary Markov chain,

Dom(Si ) = Dom(S0) and P(Si+1|Si ) = P(S1|S0) for all i ≥ 0

so it is enough to specify P(S0) and P(S1|S0).

Simple model, easy to specify

The network can extend indefinitely

A Hidden Markov Model (HMM) is a belief network of the form

S0 S1 S2 S3 S4

O0 O1 O2 O3 O4

P(S0) specifies initial conditions

P(Si+1|Si ) specifies the dynamics

P(Oi |Si ) specifies the sensor model
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Naive Bayes Classifier
Problem: classify on the basis of features Fi

P(Class|F1:n) =
P(F1:n|Class)P(Class)

P(F1:n)

Assume Fi are independent of each other given Class

P(F1:n|Class) =
∏

i

P(Fi |Class)

C

F3F2F1 F4 F5

Assume the values of features Fi are predictable given a class.

Requires P(Class) and P(Fi |Class) for each Fi
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Learning Probabilities

F1 F2 F3 F4 C Count
...

...
...

...
...

...
t f t t 1 40
t f t t 2 10
t f t t 3 50
...

...
...

...
...

...

P(C =c) =

∑
ω|=C=c Count(ω)∑

ω Count(ω)

P(Fk = b|C =c) =

∑
ω|=C=c∧Fk=b Count(ω)∑

ω|=C=c Count(ω)

with pseudo-counts (Cromwell’s rule)
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Help System

H

"able" "absent" "add" "zoom". . .

The domain of H is the set of all help pages.
The observations are the words in the query.

What probabilities are needed?
What pseudo-counts and counts are used?
What data can be used to learn from?
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Constructing a belief network

To represent a domain in a belief network, we need to consider:

What are the relevant variables?
I What will you observe?
I What would you like to find out (query)?
I What other features make the model simpler?

What values should these variables take?

What is the relationship between them?
Express this in terms of a directed graph, representing how
each variable Xi is generated from its predecessors X1:i−1.

The parents of X are variables on which X directly depends
I X is independent of its non-descendants given its parents.

How does the value of each variable depend on its parents?
This is expressed in terms of the conditional probabilities.
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Example: fire alarm belief network

Variables:

Fire: there is a fire in the building

Tampering: someone has been tampering with the fire alarm

Smoke: what appears to be smoke is coming from an upstairs
window

Alarm: the fire alarm goes off

Leaving: people are leaving the building en masse.

Report: a colleague says that people are leaving the building
en masse. (A noisy sensor for leaving.)
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Head-to-tail: Chain

report

alarm

leaving

alarm and report are

dependent

alarm and report are

independent

given
leaving

Intuitively, the only way
that the alarm affects
report is by affecting
leaving .

P(report, alarm | leaving) =
P(report, alarm, leaving)

P(leaving)

=
P(alarm)P(leaving | alarm)P(report | leaving)

P(leaving)
net

=
P(alarm, leaving)

P(leaving)
P(report | leaving) product

= P(alarm | leaving)P(report | leaving) for ⊥⊥
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Tail-to-tail: Common ancestors

smokealarm

fire

alarm and smoke are

dependent

alarm and smoke are

independent

given fire

Intuitively, fire can
explain alarm and smoke;
learning one can affect
the other by changing
your belief in fire.

smoke ⊥⊥ alarm | fire

P(smoke, alarm | fire) =
P(smoke, alarm, fire)

P(fire)

=
P(fire)P(alarm | fire)P(smoke | fire)

P(fire)
net

= P(alarm | fire)P(smoke | fire) for ⊥⊥
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Head-to-head: Common descendants

tampering

alarm

fire tampering and fire are

independent

tampering and fire are

dependent

given alarm

Intuitively, tampering
can explain away fire

P(fi = 1 | am = 1) > P(fi = 1 | am = 1 ∧ tg = 1)

for P(tg = 0) = 0.9 P(fi = 0) = 0.9

P(am = 1 | tg = 1 ∧ fi = 1) = 0.95

P(am = 1 | tg = 1 ∧ fi = 0) = 0.5

P(am = 1 | tg = 0 ∧ fi = 1) = 0.9

P(am = 1 | tg = 0 ∧ fi = 0) = 0.1
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P(fi = 1|am = 1) ≈ 0.418

P(fi = 1|am = 1) =
P(am = 1|fi = 1)P(fi = 1)

P(am = 1)
Bayes

P(am = 1|fi = 1) =
∑
tg

P(am = 1, tg |fi = 1)︸ ︷︷ ︸ sum

P(am = 1|tg , fi = 1) P(tg |fi = 1)︸ ︷︷ ︸ product

P(tg) net

P(am = 1) =
∑
tg

∑
fi

P(am = 1, tg , fi)︸ ︷︷ ︸ sum

P(tg)P(fi)P(am = 1|tg , fi) net
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P(fi = 1|am = 1, tg = 1) ≈ 0.174

P(fi = 1) net

P(fi = 1|am = 1, tg = 1) =
P(am = 1|fi = 1, tg = 1)

︷ ︸︸ ︷
P(fi = 1|tg = 1)

P(am = 1|tg = 1)

Bayes

P(am = 1|tg = 1) =
∑

fi

P(am = 1, fi |tg = 1)︸ ︷︷ ︸ sum

P(am = 1|fi , tg = 1) P(fi |tg = 1)︸ ︷︷ ︸ product

P(fi) net
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