These slides are adapted from Poole & Mackworth, chap 9

From a Constraint Satisfaction Problem [Var,Dom,Con] to random variables with probabilities constrained by a graph

• The domain (range) of a variable X, written Dom(X), is the set of (possible) values X can take.

These slides are adapted from Poole & Mackworth, chap 9

From a Constraint Satisfaction Problem [Var,Dom,Con] to random variables with probabilities constrained by a graph

- The domain (range) of a variable X, written Dom(X), is the set of (possible) values X can take.
- A proposition α is an equation X = x between a variable X and a value x ∈ Dom(X), or a Boolean combination of such.

These slides are adapted from Poole & Mackworth, chap 9

From a Constraint Satisfaction Problem [Var,Dom,Con] to random variables with probabilities constrained by a graph

- The domain (range) of a variable X, written Dom(X), is the set of (possible) values X can take.
- A proposition α is an equation X = x between a variable X and a value x ∈ Dom(X), or a Boolean combination of such.
- A proposition α is assigned a probability through
 a notion ⊨ of a possible world ω satisfying α, and
 a measure μ for weighing a set of possible worlds.

Satisfaction, measure and probability

Fix a set Ω of possible worlds ω that assign a value to each random variable, and interpret a proposition via \models

$$\omega \models X = x \iff \omega \text{ assigns } X \text{ the value } x$$
$$\omega \models \alpha \land \beta \iff \omega \models \alpha \text{ and } \omega \models \beta$$
$$\omega \models \alpha \lor \beta \iff \omega \models \alpha \text{ or } \omega \models \beta$$
$$\omega \models \neg \alpha \iff \omega \not\models \alpha.$$

Satisfaction, measure and probability

Fix a set Ω of possible worlds ω that assign a value to each random variable, and interpret a proposition via \models

$$\omega \models X = x \iff \omega \text{ assigns } X \text{ the value } x$$
$$\omega \models \alpha \land \beta \iff \omega \models \alpha \text{ and } \omega \models \beta$$
$$\omega \models \alpha \lor \beta \iff \omega \models \alpha \text{ or } \omega \models \beta$$
$$\omega \models \neg \alpha \iff \omega \not\models \alpha.$$

For finite Ω , a probability measure is a function $\mu : Pow(\Omega) \rightarrow [0, 1]$

such that $\mu(\Omega) = 1$ and for any subset S of Ω ,

$$\mu(S) = \sum_{\omega \in S} \mu(\{\omega\}).$$

5/73

Satisfaction, measure and probability

Fix a set Ω of possible worlds ω that assign a value to each random variable, and interpret a proposition via \models

$$\omega \models X = x \iff \omega \text{ assigns } X \text{ the value } x$$
$$\omega \models \alpha \land \beta \iff \omega \models \alpha \text{ and } \omega \models \beta$$
$$\omega \models \alpha \lor \beta \iff \omega \models \alpha \text{ or } \omega \models \beta$$
$$\omega \models \neg \alpha \iff \omega \not\models \alpha.$$

For finite Ω , a probability measure is a function

$$\mu: \textit{Pow}(\Omega)
ightarrow [0,1]$$

such that $\mu(\Omega) = 1$ and for any subset S of Ω ,

$$\mu(S) = \sum_{\omega \in S} \mu(\{\omega\}).$$

Given μ , a proposition α has probability

$$P(\alpha) = \mu(\{\omega \mid \omega \models \alpha\})$$

6/73

Tuples, distributions and the sum rule

A tuple X_1, \ldots, X_n of random variables is a random variable with domain

 $Dom(X_1) \times \cdots \times Dom(X_n).$

Tuples, distributions and the sum rule

A tuple X_1, \ldots, X_n of random variables is a random variable with domain

$$Dom(X_1) \times \cdots \times Dom(X_n).$$

A probability distribution on a random variable X is a function $P_X : \text{Dom}(X) \to [0, 1] \text{ s.t.}$

$$P_X(x) = P(X = x).$$

 P_X is often written as P(X), and $P_X(x)$ as P(x).

Tuples, distributions and the sum rule

A tuple X_1, \ldots, X_n of random variables is a random variable with domain

$$Dom(X_1) \times \cdots \times Dom(X_n).$$

A probability distribution on a random variable X is a function $P_X : Dom(X) \rightarrow [0, 1]$ s.t.

$$P_X(x)=P(X=x).$$

 P_X is often written as P(X), and $P_X(x)$ as P(x).

sum rule
$$P(X) = \sum_{Y} P(X, Y)$$

 $P_X(x) = \sum_{y \in Dom(Y)} P_{X,Y}(x, y)$ for $x \in Dom(X)$

9/73

$$P_X(x) = \sum_{y \in \mathsf{Dom}(Y)} P_{X,Y}(x,y) \quad ext{for } x \in \mathsf{Dom}(X)$$

$$P_X(x) = \sum_{y \in Dom(Y)} P_{X,Y}(x,y) \text{ for } x \in Dom(X)$$

 $P(X = x) = \sum_{y \in Dom(Y)} P(X = x \land Y = y)$

$$P_X(x) = \sum_{y \in \mathsf{Dom}(Y)} P_{X,Y}(x,y) \quad \text{for } x \in \mathsf{Dom}(X)$$
$$P(X = x) = \sum_{y \in \mathsf{Dom}(Y)} P(X = x \land Y = y)$$
$$\mu(\{\omega \in \Omega \mid \omega \models X = x\}) = \sum_{y \in \mathsf{Dom}(Y)} \mu(\{\omega \in \Omega \mid \omega \models X = x \land Y = y\})$$

$$P_X(x) = \sum_{y \in Dom(Y)} P_{X,Y}(x,y) \text{ for } x \in Dom(X)$$

$$P(X = x) = \sum_{y \in Dom(Y)} P(X = x \land Y = y)$$

$$\mu(\{\omega \in \Omega \mid \omega \models X = x\}) = \sum_{y \in Dom(Y)} \mu(\{\omega \in \Omega \mid \omega \models X = x \land Y = y\})$$

$$\mu(\{\omega \in \Omega \mid \omega(X) = x\}) = \sum_{y \in Dom(Y)} \mu(\{\omega \in \Omega \mid \omega(X) = x \text{ and}$$

$$\omega(Y) = y\})$$

13/73

$$P_X(x) = \sum_{y \in \mathsf{Dom}(Y)} P_{X,Y}(x,y) \quad \text{for } x \in \mathsf{Dom}(X)$$
$$P(X = x) = \sum_{y \in \mathsf{Dom}(Y)} P(X = x \land Y = y)$$
$$\mu(\{\omega \in \Omega \mid \omega \models X = x\}) = \sum_{y \in \mathsf{Dom}(Y)} \mu(\{\omega \in \Omega \mid \omega \models X = x \land Y = y\})$$
$$\mu(\{\omega \in \Omega \mid \omega(X) = x\}) = \sum_{y \in \mathsf{Dom}(Y)} \mu(\{\omega \in \Omega \mid \omega(X) = x \text{ and} \\ \omega(Y) = y\})$$

From additivity of μ (for finite Ω)

$$\mu(S) = \sum_{\omega \in S} \mu(\{\omega\})$$

▲ □ ▶
14 / 73

Joint probability from a table

Joint probability from a table

•		<i>Y</i> 1	<i>Y</i> 2	•••	Уc
margin	<i>x</i> ₁	$P(x_1, y_1)$	$P(x_1, y_2)$	•••	$P(x_1, y_c)$
$P(x_i) =$	<i>x</i> ₂	$P(x_1, y_1) P(x_2, y_1)$	$P(x_2, y_2)$		$P(x_2, y_c)$
$\sum_{y} P(x_i, y)$	÷				
<u></u> y (1), y	x _r	$P(x_r, y_1)$	$P(x_r, y_2)$	•••	$P(x_r, y_c)$

Wikipedia on Marginal distribution

Marginal variables are those variables in the subset of variables being retained. These concepts are "marginal" because they can be found by summing values in a table along rows or columns, and writing the sum in the margins of the table.

$$P(X) = \sum_{Y} P(X, Y)$$

joint probability P(X, Y)

$$P(X) = \sum_{Y} P(X, Y)$$

joint probability P(X, Y)

$$P(X) = \sum_{Y} P(X, Y)$$

marginal probability P(X)

joint probability
$$P(X, Y)$$

 $P(X) = \sum_{Y} P(X, Y)$
marginal probability $P(X)$ marginalising out Y

joint probability
$$P(X, Y)$$

 $P(X) = \sum_{Y} P(X, Y)$
marginal probability $P(X)$ marginalising out Y
 \approx eliminating Y

joint probability P(X, Y) $P(X) = \sum_{Y} P(X, Y)$ marginal probability P(X) marginalising out Y \approx eliminating Ynuisance variable Y

joint probability P(X, Y) $P(X) = \sum_{Y} P(X, Y)$ marginal probability P(X) marginalising out Y \approx eliminating Ynuisance variable YWe'll define P(X|Y) so that

P(X) =expected value of P(X|Y) over Y

joint probability P(X, Y)

$$P(X) = \sum_{Y} P(X, Y)$$

marginalising out \boldsymbol{Y}

pprox eliminating Y

nuisance variable Y

marginal probability P(X)

We'll define P(X|Y) so that

$$P(X) = \text{expected value of } P(X|Y) \text{ over } Y$$
$$= \sum_{Y} P(X|Y)P(Y)$$

4 □ ► 24 / 73

joint probability P(X, Y)

$$P(X) = \sum_{Y} P(X, Y)$$

marginalising out \boldsymbol{Y}

pprox eliminating Y

nuisance variable Y

marginal probability P(X)

We'll define P(X|Y) so that

$$P(X) = \text{expected value of } P(X|Y) \text{ over } Y$$
$$= \sum_{Y} P(X|Y)P(Y)$$
$$P(x) = \sum_{y} P(x|y)P(y)$$
$$= \mathbb{E}_{y}[P(x|y)]$$

25 / 73

Conditional probability

To incorporate a proposition α into the background assumptions, we restrict the set Ω of possible worlds to

$$\Omega\!\upharpoonright\!\alpha := \{\omega\in\Omega\mid\omega\models\alpha\}$$

and assuming $\mu(\Omega {\upharpoonright} \alpha) \neq 0$, map a subset $S \subseteq \Omega {\upharpoonright} \alpha$ to

$$\mu^{lpha}(S) := rac{\mu(S)}{\mu(\Omega{\upharpoonright}lpha)}$$

for a probability measure $\mu^{\alpha} : Pow(\Omega \upharpoonright \alpha) \to [0,1]$ on $\Omega \upharpoonright \alpha$.

Conditional probability

To incorporate a proposition α into the background assumptions, we restrict the set Ω of possible worlds to

$$\Omega\!\upharpoonright\!\alpha \ := \ \{\omega\in\Omega\mid\omega\models\alpha\}$$

and assuming $\mu(\Omega {\upharpoonright} \alpha) \neq 0$, map a subset $S \subseteq \Omega {\upharpoonright} \alpha$ to

$$\mu^{lpha}(\mathcal{S}) \ := \ rac{\mu(\mathcal{S})}{\mu(\Omega \restriction lpha)}$$

for a probability measure $\mu^{\alpha} : Pow(\Omega \upharpoonright \alpha) \to [0,1]$ on $\Omega \upharpoonright \alpha$.

The conditional probability of α' given α is

$$P(lpha' \mid lpha) := \mu^{lpha} (\Omega \restriction lpha' \wedge lpha) = rac{P(lpha' \wedge lpha)}{P(lpha)}$$

The product rule and Bayes' theorem

product rule

$$P(X, Y) = P(X|Y)P(Y)$$

$$P_{X,Y}(x, y) = P_X(x|Y = y)P_Y(y)$$

for $x \in Dom(X), y \in Dom(Y)$

The product rule and Bayes' theorem

$$\begin{array}{ll} \mathsf{product\ rule} & P(X,Y) = P(X|Y)P(Y) \\ & P_{X,Y}(x,y) = P_X(x|Y=y)P_Y(y) \\ & \text{for } x \in \mathsf{Dom}(X), \ y \in \mathsf{Dom}(Y) \end{array}$$

As conjunction is commutative $(\Omega \upharpoonright \alpha' \land \alpha = \Omega \upharpoonright \alpha \land \alpha')$, P(X, Y) = P(Y, X)

and so the product rule yields

Bayes' theorem
$$P(X|Y) = \frac{P(Y|X)P(X)}{P(Y)}$$
 if $P(Y) \neq 0$

The product rule and Bayes' theorem

product rule
$$P(X, Y) = P(X|Y)P(Y)$$

 $P_{X,Y}(x, y) = P_X(x|Y = y)P_Y(y)$
for $x \in Dom(X), y \in Dom(Y)$

As conjunction is commutative $(\Omega \upharpoonright \alpha' \land \alpha = \Omega \upharpoonright \alpha \land \alpha')$, P(X, Y) = P(Y, X)

and so the product rule yields

Bayes' theorem
$$P(X|Y) = \frac{P(Y|X)P(X)}{P(Y)}$$
 if $P(Y) \neq 0$

The prior probability of α

$$P(\alpha) = \mu(\Omega \restriction \alpha)$$

is updated by $lpha_\circ$ to the posterior probability given $lpha_\circ$

$$P(\alpha \mid \alpha_{\circ}) = \mu^{\alpha_{\circ}}(\Omega \upharpoonright (\alpha \land \alpha_{\circ}))$$

Why is Bayes' theorem interesting?

Form a hypothesis *h* given evidence *e* with $P(e) \neq 0$ via Bayes

$$P(h|e) = rac{P(e|h)P(h)}{P(e)}$$

•

Why is Bayes' theorem interesting?

Form a hypothesis *h* given evidence *e* with $P(e) \neq 0$ via Bayes

$$P(h|e) = rac{P(e|h)P(h)}{P(e)}$$

We often have causal knowledge

$$P(ext{symptom} \mid ext{disease}), \quad P(ext{alarm} \mid ext{fire})$$

 $P(ext{image} = \blacksquare \mid ext{a tree is in front of a car})$

but want to do evidential reasoning

$$P(\text{disease} \mid \text{symptom}), P(\text{fire} \mid \text{alarm})$$

 $P(\text{a tree is in front of a car} \mid \text{image} = \textbf{A})$

32 / 73

Tuples and the chain rule

Recall: a tuple X_1, \ldots, X_n of random variables is a random variable. Let us write

 $X_{1:n}$ for X_1, \ldots, X_n

Tuples and the chain rule

Recall: a tuple X_1, \ldots, X_n of random variables is a random variable. Let us write

$$X_{1:n}$$
 for X_1,\ldots,X_n

and apply the product rule repeatedly for

$$P(X_{1:n}) = P(X_n | X_{1:n-1})P(X_{1:n-1})$$

= $P(X_n | X_{1:n-1})P(X_{n-1} | X_{1:n-2})P(X_{1:n-2})$
= \cdots
= $\prod_{i=1}^n P(X_i | X_{1:i-1})$ chain rule

with $X_{1:0}$ as the empty tuple and $P(X_1 | X_{1:0}) = P(X_1)$.

□ →34 / 73

Simplifying the chain rule via conditional independence Choose a sub-tuple *parents*(X_i) of $X_{1:i-1}$ such that

 $P(X_i | X_{1:i-1}) = P(X_i | parents(X_i)) .$

Simplifying the chain rule via conditional independence Choose a sub-tuple $parents(X_i)$ of $X_{1:i-1}$ such that

$$P(X_i | X_{1:i-1}) = P(X_i | parents(X_i)) .$$

X is independent of Y given Z, written $X \perp \!\!\!\perp Y \mid Z$, $P(X \mid Y, Z) = P(X \mid Z)$ Simplifying the chain rule via conditional independence Choose a sub-tuple $parents(X_i)$ of $X_{1:i-1}$ such that

$$P(X_i | X_{1:i-1}) = P(X_i | parents(X_i)) .$$

X is independent of Y given Z, written $X \perp \!\!\!\perp Y \mid Z$,

$$P(X \mid Y, Z) = P(X \mid Z)$$

i.e. for all $x \in \text{Dom}(X)$, $y \in \text{Dom}(Y)$, and $z \in \text{Dom}(Z)$,

$$P(X = x \mid Y = y \land Z = z) = P(X = x \mid Z = z)$$

— knowing Y's value says nothing about X's value, given Z's value.

Simplifying the chain rule via conditional independence Choose a sub-tuple $parents(X_i)$ of $X_{1:i-1}$ such that

$$P(X_i | X_{1:i-1}) = P(X_i | parents(X_i)) .$$

X is independent of Y given Z, written $X \perp \!\!\!\perp Y \mid Z$,

$$P(X \mid Y, Z) = P(X \mid Z)$$

i.e. for all $x \in \text{Dom}(X)$, $y \in \text{Dom}(Y)$, and $z \in \text{Dom}(Z)$,

$$P(X = x \mid Y = y \land Z = z) = P(X = x \mid Z = z)$$

— knowing Y's value says nothing about X's value, given Z's value.

Note

$$X \perp\!\!\!\perp Y \mid Z \iff P(X, Y \mid Z) = P(X \mid Z)P(Y \mid Z)$$
$$\iff Y \perp\!\!\!\perp X \mid Z$$

Totally order the variables of interest

$$X_1 < X_2 < \cdots < X_n$$

and for each *i* from 1 to *n*, choose $parents(X_i)$ from $X_{1:i-1}$ s.t.

$$P(X_i | X_{1:i-1}) = P(X_i | parents(X_i))$$
 (†)

Belief networks

Totally order the variables of interest

$$X_1 < X_2 < \cdots < X_n$$

and for each *i* from 1 to *n*, choose $parents(X_i)$ from $X_{1:i-1}$ s.t.

$$P(X_i | X_{1:i-1}) = P(X_i | parents(X_i))$$
 (†)

A belief network consists of:

- a directed acyclic graph with nodes = random variables, and an arc from the parents of each node into that node
- a domain for each random variable
- conditional probability tables for each variable given its parents (for a probability distribution respecting (†))

Example: Markov chain

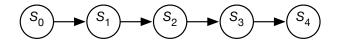
A Markov chain is a special sort of belief network:



What probabilities need to be specified?

Example: Markov chain

A Markov chain is a special sort of belief network:

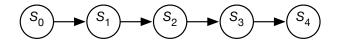


What probabilities need to be specified?

- $P(S_0)$ specifies initial conditions
- $P(S_{t+1}|S_t)$ specifies the dynamics

Example: Markov chain

A Markov chain is a special sort of belief network:



What probabilities need to be specified?

- $P(S_0)$ specifies initial conditions
- $P(S_{t+1}|S_t)$ specifies the dynamics

What independence assumptions are made?

$$P(S_{t+1}|S_{0:t}) = P(S_{t+1}|S_t)$$

 S_t represents the state at time t, capturing everything about the past (< t) that can affect the future (> t)

The future is independent of the past given the present.

Two elaborations

In a stationary Markov chain,

 $\mathsf{Dom}(S_i) = \mathsf{Dom}(S_0)$ and $P(S_{i+1}|S_i) = P(S_1|S_0)$ for all $i \ge 0$

so it is enough to specify $P(S_0)$ and $P(S_1|S_0)$.

- Simple model, easy to specify
- The network can extend indefinitely

Two elaborations

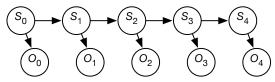
In a stationary Markov chain,

 $\mathsf{Dom}(S_i) = \mathsf{Dom}(S_0)$ and $P(S_{i+1}|S_i) = P(S_1|S_0)$ for all $i \ge 0$

so it is enough to specify $P(S_0)$ and $P(S_1|S_0)$.

- Simple model, easy to specify
- The network can extend indefinitely

A Hidden Markov Model (HMM) is a belief network of the form



- $P(S_0)$ specifies initial conditions
- $P(S_{i+1}|S_i)$ specifies the dynamics
- $P(O_i|S_i)$ specifies the sensor model

Naive Bayes Classifier

Problem: classify on the basis of features F_i

$$P(Class|F_{1:n}) = \frac{P(F_{1:n}|Class)P(Class)}{P(F_{1:n})}$$

Naive Bayes Classifier

Problem: classify on the basis of features F_i

$$P(Class|F_{1:n}) = \frac{P(F_{1:n}|Class)P(Class)}{P(F_{1:n})}$$

Assume F_i are independent of each other given *Class*

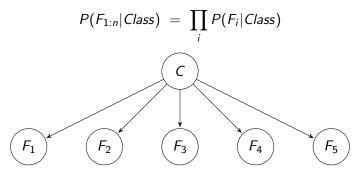
$$P(F_{1:n}|Class) = \prod_{i} P(F_i|Class)$$

Naive Bayes Classifier

Problem: classify on the basis of features F_i

$$P(Class|F_{1:n}) = \frac{P(F_{1:n}|Class)P(Class)}{P(F_{1:n})}$$

Assume F_i are independent of each other given Class



Assume the values of features F_i are predictable given a class. Requires P(Class) and $P(F_i|Class)$ for each F_i

Learning Probabilities

F_1	F_2	F_3	F_4	С	Count
:	÷	÷	÷	÷	
t	f	t	t	1	40
t	f	t	t	2	10
t	f	t	t	3	50
:	÷	÷	÷	÷	

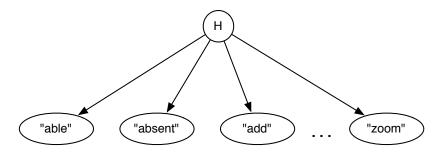
Learning Probabilities

F_1	F_2	F ₃	F_4	С	Count
:	÷	÷	÷	÷	:
t	f	t	t	1	40
t	f	t	t	2	10
t	f	t	t	3	50
:	÷	÷	÷	÷	÷

$$P(C=c) = \frac{\sum_{\omega \models C=c} Count(\omega)}{\sum_{\omega} Count(\omega)}$$
$$P(F_k = b | C=c) = \frac{\sum_{\omega \models C=c \land F_k = b} Count(\omega)}{\sum_{\omega \models C=c} Count(\omega)}$$

with pseudo-counts (Cromwell's rule)

Help System



- The domain of *H* is the set of all help pages. The observations are the words in the query.
- What probabilities are needed?
 What pseudo-counts and counts are used?
 What data can be used to learn from?

Constructing a belief network

To represent a domain in a belief network, we need to consider:

- What are the relevant variables?
 - What will you observe?
 - What would you like to find out (query)?
 - What other features make the model simpler?
- What values should these variables take?
- What is the relationship between them? Express this in terms of a directed graph, representing how each variable X_i is generated from its predecessors X_{1:i-1}.

The parents of X are variables on which X directly depends

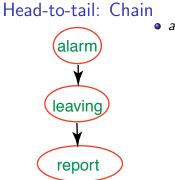
X is independent of its non-descendants given its parents.

• How does the value of each variable depend on its parents? This is expressed in terms of the conditional probabilities.

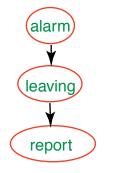
Example: fire alarm belief network

Variables:

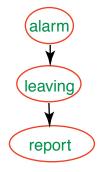
- Fire: there is a fire in the building
- Tampering: someone has been tampering with the fire alarm
- Smoke: what appears to be smoke is coming from an upstairs window
- Alarm: the fire alarm goes off
- Leaving: people are leaving the building *en masse*.
- Report: a colleague says that people are leaving the building *en masse*. (A noisy sensor for leaving.)



• alarm and report are



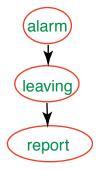
• *alarm* and *report* are dependent



- *alarm* and *report* are dependent
- *alarm* and *report* are

given

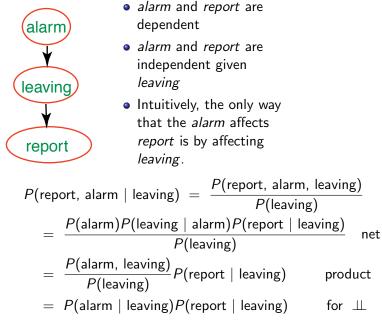
leaving



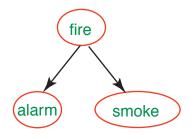
- *alarm* and *report* are dependent
- alarm and report are independent given leaving



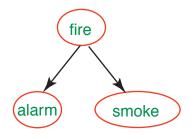
- *alarm* and *report* are dependent
- alarm and report are independent given leaving
- Intuitively, the only way that the *alarm* affects report is by affecting *leaving*.



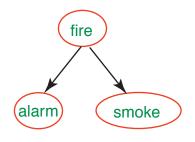
• alarm and smoke are



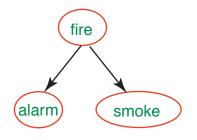
 alarm and smoke are dependent

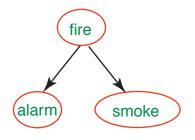


- alarm and smoke are dependent
- alarm and smoke are given fire

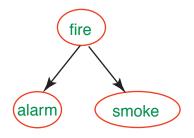


- alarm and smoke are dependent
- alarm and smoke are independent given fire



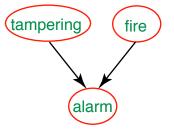


- alarm and smoke are dependent
- *alarm* and *smoke* are independent given *fire*
- Intuitively, *fire* can explain *alarm* and *smoke*; learning one can affect the other by changing your belief in *fire*.

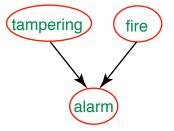


- alarm and smoke are dependent
- alarm and smoke are independent given fire
- Intuitively, *fire* can explain *alarm* and *smoke*; learning one can affect the other by changing your belief in *fire*.

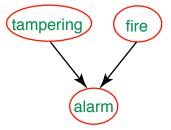
smoke $\perp \perp$ alarm | fire $P(\text{smoke, alarm | fire}) = \frac{P(\text{smoke, alarm, fire})}{P(\text{fire})}$ $= \frac{P(\text{fire})P(\text{alarm | fire})P(\text{smoke | fire})}{P(\text{fire})} \quad \text{net}$ $= P(\text{alarm | fire})P(\text{smoke | fire}) \quad \text{for } \perp \perp$



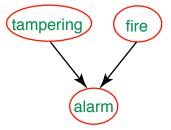
• *tampering* and *fire* are



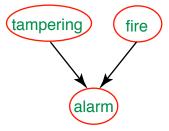
• *tampering* and *fire* are independent



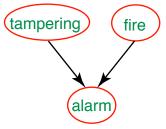
- *tampering* and *fire* are independent
- *tampering* and *fire* are given *alarm*



- *tampering* and *fire* are independent
- *tampering* and *fire* are dependent given *alarm*



- *tampering* and *fire* are independent
- *tampering* and *fire* are dependent given *alarm*
- Intuitively, *tampering* can explain away fire



- *tampering* and *fire* are independent
- *tampering* and *fire* are dependent given *alarm*
- Intuitively, *tampering* can explain away *fire*

$$P(\mathsf{fi}=1 \mid \mathsf{am}=1) > P(\mathsf{fi}=1 \mid \mathsf{am}=1 \land \mathsf{tg}=1)$$

for
$$P(tg = 0) = 0.9$$
 $P(fi = 0) = 0.9$
 $P(am = 1 | tg = 1 \land fi = 1) = 0.95$
 $P(am = 1 | tg = 1 \land fi = 0) = 0.5$
 $P(am = 1 | tg = 0 \land fi = 1) = 0.9$
 $P(am = 1 | tg = 0 \land fi = 0) = 0.1$

 $P(\mathsf{fi}=1|\mathsf{am}=1) pprox 0.418$

$$P(\mathsf{fi}=1|\mathsf{am}=1) = rac{P(\mathsf{am}=1|\mathsf{fi}=1)P(\mathsf{fi}=1)}{P(\mathsf{am}=1)}$$
 Bayes

$$P(\mathsf{am} = 1|\mathsf{fi} = 1) = \sum_{tg} \underbrace{P(\mathsf{am} = 1, tg|\mathsf{fi} = 1)}_{P(\mathsf{am} = 1|tg, \mathsf{fi} = 1)} \underbrace{P(tg|\mathsf{fi} = 1)}_{P(tg)} \text{ product}$$

$$P(\mathsf{am} = 1) = \sum_{tg} \sum_{fi} \underbrace{P(\mathsf{am} = 1, tg, fi)}_{P(tg)P(fi)P(\mathsf{am} = 1|tg, fi)} \quad \text{sum}$$

72 / 73

 $P({\rm fi}=1|{\rm am}=1,{\rm tg}=1)pprox 0.174$

$$P(\mathsf{fi}=1|\mathsf{am}=1,\mathsf{tg}=1) = \frac{P(\mathsf{am}=1|\mathsf{fi}=1,\mathsf{tg}=1)}{P(\mathsf{am}=1|\mathsf{tg}=1)} \underbrace{\frac{P(\mathsf{fi}=1)}{P(\mathsf{fi}=1|\mathsf{tg}=1)}}_{\text{Bayes}}$$

$$P(\mathsf{am} = 1 | \mathsf{tg} = 1) = \sum_{fi} \underbrace{P(\mathsf{am} = 1, fi | \mathsf{tg} = 1)}_{fi} \operatorname{sum} P(\mathsf{am} = 1 | fi, \mathsf{tg} = 1) \underbrace{P(fi | \mathsf{tg} = 1)}_{P(fi)} \operatorname{product}$$

73 / 73