
How Google lost $100 billion

From ML

1 / 36

https://www.youtube.com/watch?v=fwaDtRbfioU

How Google lost $100 billion

From ML

2 / 36

https://www.youtube.com/watch?v=fwaDtRbfioU

How Google lost $100 billion

From ML

3 / 36

https://www.youtube.com/watch?v=fwaDtRbfioU

Truth matters

4 / 36

Truth matters

5 / 36

Truth matters

6 / 36

Truth matters

7 / 36

Logic & the search for truth

www.logicomix.com

Challenges to

- truth
Liar’s Paradox: ‘I am lying’

- sets (membership ∈)
Russell set R = {x | not x ∈ x}

- search (one by one)
Cantor: subsets of {0, 1, 2, . . .} are uncountable

- computability
Turing: Halting Problem is uncomputable

8 / 36

https://www.scss.tcd.ie/Tim.Fernando/AI/rch.pdf
http://www.lel.ed.ac.uk/~gpullum/loopsnoop.html

Logic & the search for truth
Challenges to

- truth
Liar’s Paradox: ‘I am lying’

P: Trump is lying.

T: Putin is telling
the truth.

- sets (membership ∈)
Russell set R = {x | not x ∈ x}

- search (one by one)
Cantor: subsets of {0, 1, 2, . . .} are uncountable

- computability
Turing: Halting Problem is uncomputable

9 / 36

https://www.scss.tcd.ie/Tim.Fernando/AI/rch.pdf
http://www.lel.ed.ac.uk/~gpullum/loopsnoop.html

Logic & the search for truth

Challenges to

- truth
Liar’s Paradox: ‘I am lying’

- sets (membership ∈)
Russell set R = {x | not x ∈ x}

- search (one by one)
Cantor: subsets of {0, 1, 2, . . .} are uncountable

- computability
Turing: Halting Problem is uncomputable

10 / 36

https://www.scss.tcd.ie/Tim.Fernando/AI/rch.pdf
http://www.lel.ed.ac.uk/~gpullum/loopsnoop.html

Logic & the search for truth

Challenges to

- truth
Liar’s Paradox: ‘I am lying’

- sets (membership ∈)
Russell set R = {x | not x ∈ x}
R ∈ R ⇐⇒ not R ∈ R

- search (one by one)
Cantor: subsets of {0, 1, 2, . . .} are uncountable

- computability
Turing: Halting Problem is uncomputable

11 / 36

https://www.scss.tcd.ie/Tim.Fernando/AI/rch.pdf
http://www.lel.ed.ac.uk/~gpullum/loopsnoop.html

Logic & the search for truth
Challenges to

- truth
Liar’s Paradox: ‘I am lying’

- sets (membership ∈)
Russell set R = {x | not x ∈ x}

- search (one by one)
Cantor: subsets of {0, 1, 2, . . .} are uncountable

s1 = 0 0 0 0 0 0 0 0 0 0 0 . . .
s2 = 1 1 1 1 1 1 1 1 1 1 1 . . .
s3 = 0 1 0 1 0 1 0 1 0 1 0 . . .
s4 = 1 0 1 0 1 0 1 0 1 0 1 . . .
s5 = 1 1 0 1 0 1 1 0 1 0 1 . . .
s6 = 0 0 1 1 0 1 1 0 1 1 0 . . .
s7 = 1 0 0 0 1 0 0 0 1 0 0 . . .
s8 = 0 0 1 1 0 0 1 1 0 0 1 . . .
s9 = 1 1 0 0 1 1 0 0 1 1 0 . . .
s10 = 1 1 0 1 1 1 0 0 1 0 1 . . .
s11 = 1 1 0 1 0 1 0 0 1 0 0 . . .
...

...
...
...
...
...
...
...
...
...
...
...
. . .

s = 1 0 1 1 1 0 1 0 0 1 1 . . .

https://upload.wikimedia.org/wikipedia/commons/e/ed/Diagonal argument 01.pdf

- computability
Turing: Halting Problem is uncomputable

12 / 36

https://www.scss.tcd.ie/Tim.Fernando/AI/rch.pdf
http://www.lel.ed.ac.uk/~gpullum/loopsnoop.html

Logic & the search for truth

Challenges to

- truth
Liar’s Paradox: ‘I am lying’

- sets (membership ∈)
Russell set R = {x | not x ∈ x}

- search (one by one)
Cantor: subsets of {0, 1, 2, . . .} are uncountable

- computability
Turing: Halting Problem is uncomputable

13 / 36

https://www.scss.tcd.ie/Tim.Fernando/AI/rch.pdf
http://www.lel.ed.ac.uk/~gpullum/loopsnoop.html

The Halting Problem

Given a program P and data D, return either 0 or 1 (as output),
with 1 indicating that P halts on input D

HP(P,D) :=

{
1 if P halts on D
0 otherwise

Theorem (Turing) No TM computes HP.

The proof is similar to the Liar’s Paradox distributed as follows

H: ‘L speaks the truth’
L: ‘H lies’

with a spoiler L (exposing H as a fraud).

14 / 36

The Halting Problem

Given a program P and data D, return either 0 or 1 (as output),
with 1 indicating that P halts on input D

HP(P,D) :=

{
1 if P halts on D
0 otherwise

Theorem (Turing) No TM computes HP.

The proof is similar to the Liar’s Paradox distributed as follows

H: ‘L speaks the truth’
L: ‘H lies’

with a spoiler L (exposing H as a fraud).

15 / 36

Proof of uncomputability

Given a TM P that takes two arguments, we show P does not
compute HP by defining a TM P such that

P(P,P) 6= HP(P,P) .

Let

P(D) :'
{

1 if P(D,D) = 0
loop otherwise.

and notice

HP(P,P) =

{
1 if P halts on P
0 otherwise

(def of HP)

=

{
1 if P(P,P) = 0
0 otherwise

(def of P)

�

16 / 36

https://www.youtube.com/watch?v=92WHN-pAFCs&pbjreload=10

Proof of uncomputability

Given a TM P that takes two arguments, we show P does not
compute HP by defining a TM P such that

P(P,P) 6= HP(P,P) .

Let

P(D) :'
{

1 if P(D,D) = 0
loop otherwise.

and notice

HP(P,P) =

{
1 if P halts on P
0 otherwise

(def of HP)

=

{
1 if P(P,P) = 0
0 otherwise

(def of P)

�

17 / 36

https://www.youtube.com/watch?v=92WHN-pAFCs&pbjreload=10

Semi-solvability of HP
There is a TM that meets the positive part of HP (looping exactly
when HP asks for 0), in view of the existence of a

Universal Turing Machine: a TM U that runs P on D

U(P,D) ' P(D)

for any given TM P and data D.

Turing 1950: Can machines think?

Let us fix our attention on one particular digital computer
C. Is it true that by modifying this computer to have an
adequate storage, suitably increasing its speed of action,
and providing it with an appropriate programme, C can be
made to play satisfactorily the part of A in the imitation
game, the part of B being taken by a man?

TMs can be quite complex.
But for many, halting is no problem — e.g. finite state machines.

18 / 36

Semi-solvability of HP
There is a TM that meets the positive part of HP (looping exactly
when HP asks for 0), in view of the existence of a

Universal Turing Machine: a TM U that runs P on D

U(P,D) ' P(D)

for any given TM P and data D.

Turing 1950: Can machines think?

Let us fix our attention on one particular digital computer
C. Is it true that by modifying this computer to have an
adequate storage, suitably increasing its speed of action,
and providing it with an appropriate programme, C can be
made to play satisfactorily the part of A in the imitation
game, the part of B being taken by a man?

TMs can be quite complex.
But for many, halting is no problem — e.g. finite state machines.

19 / 36

Semi-solvability of HP
There is a TM that meets the positive part of HP (looping exactly
when HP asks for 0), in view of the existence of a

Universal Turing Machine: a TM U that runs P on D

U(P,D) ' P(D)

for any given TM P and data D.

Turing 1950: Can machines think?

Let us fix our attention on one particular digital computer
C. Is it true that by modifying this computer to have an
adequate storage, suitably increasing its speed of action,
and providing it with an appropriate programme, C can be
made to play satisfactorily the part of A in the imitation
game, the part of B being taken by a man?

TMs can be quite complex.
But for many, halting is no problem — e.g. finite state machines.

20 / 36

Prior Knowledge

Environment

Stimuli
Actions

Past Experiences

Goals/Preferences

Agent

Abilities

How?

Real-world task

CS221 / Autumn 2016 / Liang 42

• So having stated the motivation for working on AI and the challenges, how should we actually make
progress?

• Given a complex real-world task, at the end of the day, we need to write some code (and possibly build
some hardware too). But there is a huge chasm between the real-world task and code.

Paradigm

Real-world task

Modeling

Formal task (model)

Algorithms

Program

CS221 / Autumn 2016 / Liang [modeling/algorithms] 44

• A useful paradigm for solving complex tasks is to break them up into two stages. The first stage is modeling,
whereby messy real-world tasks are converted into clean formal tasks called models. The second stage is
algorithms, where we find efficient ways to solve these formal tasks.

Algorithms (example)

Formal task:

• Input: list L = [x1, . . . , xn] and a function f : X �→ R

• Output: k highest-scoring elements

Example (k = 2):

L: A B C D

f : 3 2 7 1

Two algorithms:

• Scan through to find largest, scan through again to find the second
largest, etc.

• Sort L based on f , return first k elements

CS221 / Autumn 2016 / Liang 46

• Let’s start with something that you’re probably familiar with: algorithms. When you study algorithms, you
are generally given a well-defined formal task, something specified with mathematical precision, and your
goal is to solve the task. A solution either solves the formal task or it doesn’t, and in general, there are
many possible solutions with different computational trade-offs.

• As an example, suppose you wanted to find the k largest elements in a list of L = [x1, . . . , xn] according
to given a scoring function f that maps each element into a real-valued score.

• Solving a formal task involves coming up with increasingly more efficient algorithms for solving the task.

Church-Turing thesis: Program ≈ Turing machine

finite action control
⇓

· · · # # a1 a2 · · · an︸ ︷︷ ︸ # # · · ·

input & output symbols

21 / 36

Prior Knowledge

Environment

Stimuli
Actions

Past Experiences

Goals/Preferences

Agent

Abilities

How?

Real-world task

CS221 / Autumn 2016 / Liang 42

• So having stated the motivation for working on AI and the challenges, how should we actually make
progress?

• Given a complex real-world task, at the end of the day, we need to write some code (and possibly build
some hardware too). But there is a huge chasm between the real-world task and code.

Paradigm

Real-world task

Modeling

Formal task (model)

Algorithms

Program

CS221 / Autumn 2016 / Liang [modeling/algorithms] 44

• A useful paradigm for solving complex tasks is to break them up into two stages. The first stage is modeling,
whereby messy real-world tasks are converted into clean formal tasks called models. The second stage is
algorithms, where we find efficient ways to solve these formal tasks.

Algorithms (example)

Formal task:

• Input: list L = [x1, . . . , xn] and a function f : X �→ R

• Output: k highest-scoring elements

Example (k = 2):

L: A B C D

f : 3 2 7 1

Two algorithms:

• Scan through to find largest, scan through again to find the second
largest, etc.

• Sort L based on f , return first k elements

CS221 / Autumn 2016 / Liang 46

• Let’s start with something that you’re probably familiar with: algorithms. When you study algorithms, you
are generally given a well-defined formal task, something specified with mathematical precision, and your
goal is to solve the task. A solution either solves the formal task or it doesn’t, and in general, there are
many possible solutions with different computational trade-offs.

• As an example, suppose you wanted to find the k largest elements in a list of L = [x1, . . . , xn] according
to given a scoring function f that maps each element into a real-valued score.

• Solving a formal task involves coming up with increasingly more efficient algorithms for solving the task.

Church-Turing thesis: Program ≈ Turing machine

finite action control
⇓

· · · # # a1 a2 · · · an︸ ︷︷ ︸ # # · · ·

input & output symbols

22 / 36

Prior Knowledge

Environment

Stimuli
Actions

Past Experiences

Goals/Preferences

Agent

Abilities

How?

Real-world task

CS221 / Autumn 2016 / Liang 42

• So having stated the motivation for working on AI and the challenges, how should we actually make
progress?

• Given a complex real-world task, at the end of the day, we need to write some code (and possibly build
some hardware too). But there is a huge chasm between the real-world task and code.

Paradigm

Real-world task

Modeling

Formal task (model)

Algorithms

Program

CS221 / Autumn 2016 / Liang [modeling/algorithms] 44

• A useful paradigm for solving complex tasks is to break them up into two stages. The first stage is modeling,
whereby messy real-world tasks are converted into clean formal tasks called models. The second stage is
algorithms, where we find efficient ways to solve these formal tasks.

Algorithms (example)

Formal task:

• Input: list L = [x1, . . . , xn] and a function f : X �→ R

• Output: k highest-scoring elements

Example (k = 2):

L: A B C D

f : 3 2 7 1

Two algorithms:

• Scan through to find largest, scan through again to find the second
largest, etc.

• Sort L based on f , return first k elements

CS221 / Autumn 2016 / Liang 46

• Let’s start with something that you’re probably familiar with: algorithms. When you study algorithms, you
are generally given a well-defined formal task, something specified with mathematical precision, and your
goal is to solve the task. A solution either solves the formal task or it doesn’t, and in general, there are
many possible solutions with different computational trade-offs.

• As an example, suppose you wanted to find the k largest elements in a list of L = [x1, . . . , xn] according
to given a scoring function f that maps each element into a real-valued score.

• Solving a formal task involves coming up with increasingly more efficient algorithms for solving the task.

Church-Turing thesis: Program ≈ Turing machine

finite action control
⇓

· · · # # a1 a2 · · · an︸ ︷︷ ︸ # # · · ·

input & output symbols

23 / 36

Finite state machine (fsm)

q0start q1

a

b

b

A fsm M is a triple [Trans, Final, Q0] where

- Trans is a list of triples [Q,X,Qn] such that M may, at
state Q seeing symbol X, change state to Qn

- Final is a list of M’s final (i.e. accepting) states

- Q0 is M’s initial state.

E.g. Trans = [[q0,a,q0],[q0,b,q1],[q1,b,q1]]

Final = [q1]

Q0 = q0

24 / 36

Finite state machine (fsm)

q0start q1

a

b

b

A fsm M is a triple [Trans, Final, Q0] where

- Trans is a list of triples [Q,X,Qn] such that M may, at
state Q seeing symbol X, change state to Qn

- Final is a list of M’s final (i.e. accepting) states

- Q0 is M’s initial state.

E.g. Trans = [[q0,a,q0],[q0,b,q1],[q1,b,q1]]

Final = [q1]

Q0 = q0

25 / 36

From strings to fsm’s

Encode strings as lists; e.g. 102 as [1,0,2].

q0 q1 q2 q3
1 0 2

% string2fsm(+String, ?TransitionSet, ?FinalStates)

string2fsm([], [], [q0]).

string2fsm([H|T], Trans, [Last]) :-

mkTL(T, [H], [[q0, H, [H]]], Trans, Last).

% mkTL(+More, +LastSoFar, +TransSoFar, ?Trans, ?Last)

mkTL([], L, Trans, Trans, L).

mkTL([H|T], L, TransSoFar, Trans, Last) :-

mkTL(T, [H|L], [[L,H,[H|L]]|TransSoFar],

Trans, Last).

States as histories (in reverse)

26 / 36

From strings to fsm’s

Encode strings as lists; e.g. 102 as [1,0,2].

q0 q1 q2 q3
1 0 2

% string2fsm(+String, ?TransitionSet, ?FinalStates)

string2fsm([], [], [q0]).

string2fsm([H|T], Trans, [Last]) :-

mkTL(T, [H], [[q0, H, [H]]], Trans, Last).

% mkTL(+More, +LastSoFar, +TransSoFar, ?Trans, ?Last)

mkTL([], L, Trans, Trans, L).

mkTL([H|T], L, TransSoFar, Trans, Last) :-

mkTL(T, [H|L], [[L,H,[H|L]]|TransSoFar],

Trans, Last).

States as histories (in reverse)

27 / 36

From strings to fsm’s

Encode strings as lists; e.g. 102 as [1,0,2].

q0 q1 q2 q3
1 0 2

% string2fsm(+String, ?TransitionSet, ?FinalStates)

string2fsm([], [], [q0]).

string2fsm([H|T], Trans, [Last]) :-

mkTL(T, [H], [[q0, H, [H]]], Trans, Last).

% mkTL(+More, +LastSoFar, +TransSoFar, ?Trans, ?Last)

mkTL([], L, Trans, Trans, L).

mkTL([H|T], L, TransSoFar, Trans, Last) :-

mkTL(T, [H|L], [[L,H,[H|L]]|TransSoFar],

Trans, Last).

States as histories (in reverse)

28 / 36

From strings to fsm’s

Encode strings as lists; e.g. 102 as [1,0,2].

q0 q1 q2 q3
1 0 2

% string2fsm(+String, ?TransitionSet, ?FinalStates)

string2fsm([], [], [q0]).

string2fsm([H|T], Trans, [Last]) :-

mkTL(T, [H], [[q0, H, [H]]], Trans, Last).

% mkTL(+More, +LastSoFar, +TransSoFar, ?Trans, ?Last)

mkTL([], L, Trans, Trans, L).

mkTL([H|T], L, TransSoFar, Trans, Last) :-

mkTL(T, [H|L], [[L,H,[H|L]]|TransSoFar],

Trans, Last).

States as histories (in reverse)

29 / 36

More on states-as-histories

Encoding q0 as [] leads to the simplification

str2fsm(String, Trans, [Last]) :-

mkTL(String, [], [], Trans, Last).

States-as-histories works for finite languages, but not say, a∗bb∗

a∗start a∗bb∗

a

b

b

for state-as-set-of-equivalent-histories,
where equivalence has to do with acceptable futures . . .

30 / 36

More on states-as-histories

Encoding q0 as [] leads to the simplification

str2fsm(String, Trans, [Last]) :-

mkTL(String, [], [], Trans, Last).

States-as-histories works for finite languages,

but not say, a∗bb∗

a∗start a∗bb∗

a

b

b

for state-as-set-of-equivalent-histories,
where equivalence has to do with acceptable futures . . .

31 / 36

More on states-as-histories

Encoding q0 as [] leads to the simplification

str2fsm(String, Trans, [Last]) :-

mkTL(String, [], [], Trans, Last).

States-as-histories works for finite languages, but not say, a∗bb∗

a∗start a∗bb∗

a

b

b

for state-as-set-of-equivalent-histories,
where equivalence has to do with acceptable futures . . .

32 / 36

More on states-as-histories

Encoding q0 as [] leads to the simplification

str2fsm(String, Trans, [Last]) :-

mkTL(String, [], [], Trans, Last).

States-as-histories works for finite languages, but not say, a∗bb∗

a∗start a∗bb∗

a

b

b

for state-as-set-of-equivalent-histories,
where equivalence has to do with acceptable futures . . .

33 / 36

Exercise
Define a 4-ary predicate

accept(+Trans,+Final,+Q0,?String)

that is true exactly when [Trans,Final,Q0] is a fsm that accepts
String (encoded as a list).

That is, write a Prolog program to answer queries such as

?- accept([[q0,0,q1],[q0,1,q1],[q1,0,q0],[q1,1,q0]],

[q1], q0, [1,0,0]).

true

q0 q1
0,1

0,1

test(String) :- string2fsm(String, Trans, Final),

accept(Trans, Final, q0, String).

34 / 36

Exercise
Define a 4-ary predicate

accept(+Trans,+Final,+Q0,?String)

that is true exactly when [Trans,Final,Q0] is a fsm that accepts
String (encoded as a list).

That is, write a Prolog program to answer queries such as

?- accept([[q0,0,q1],[q0,1,q1],[q1,0,q0],[q1,1,q0]],

[q1], q0, [1,0,0]).

true

q0 q1
0,1

0,1

test(String) :- string2fsm(String, Trans, Final),

accept(Trans, Final, q0, String).

35 / 36

Exercise
Define a 4-ary predicate

accept(+Trans,+Final,+Q0,?String)

that is true exactly when [Trans,Final,Q0] is a fsm that accepts
String (encoded as a list).

That is, write a Prolog program to answer queries such as

?- accept([[q0,0,q1],[q0,1,q1],[q1,0,q0],[q1,1,q0]],

[q1], q0, [1,0,0]).

true

q0 q1
0,1

0,1

test(String) :- string2fsm(String, Trans, Final),

accept(Trans, Final, q0, String).
36 / 36

