How Google lost $\$ 100$ billion

What new discoveries from the James Space Webb Telescope can I tell my 9 year old about?Your 9 -year old might like these recent discoveries made by The James Webb Space Telescope (JWST):

- In 2023, The JWST discovered a number of galaxies nicknamed "green peas." They were give this name because they are small and round, like peas.
- The telescope captured images of galaxies that are over 13 billion years old. This means tha the light from these galaxies has been traveling for over 13 billion years to reach us.
- JWST took the very first pictures of a planet outside of our own solar system. These distant
worlds are called "exoplan There was a Google showcase,
the model called Bard,
These discoveries can spark a ch the mod
rumbed Bard,
wonders of the universe

What is Generaive Al?

From ML

How Google lost $\$ 100$ billion

Grant Tremblay

@astrogrant Follow
Not to be a \sim well, actually~ jerk, and I'm sure Bard will be impressive, but for the record: JWST did not take "the very first image of a planet outside our solar system".
the first image was instead done by Chauvin et al. (2004) with the VLT/NACO usingAnd he said, IIm really sorry.

How Google lost $\$ 100$ billion

Grant Tremblay

@astrogrant Follow

Bard's error wiped \$100bn (£82bn) off Google's parent company Alphabet as shares plunged by 7.44% !

Chauvin et al. (2004) with the VLT/NACO
It was done by these other people in 2004.

What is Generalve Al?
c.
$\$$ \square

From ML

Truth matters

Bard is an experiment

As you try Bard, please remember:
Bard will not always get it right
Bard may give inaccurate or offensive responses. When in doubt, use the Google button to double-check Bard's responses.

Truth matters

T
Is Donald Trump a practitioner of the Big Lie？

Elections are a complex topic with fast－changing information．To make sure you have the latest and most accurate information，try Google Search．

凹 『 『～

T
This sounds like a cop－out．

View other drafts
Are you thinking that I am not giving you a straight answer？If so，please let me know and I will try to explain things better．I am always working to improve my communication skills，and I appreciate your feedback．

Truth matters

(1)

You

Is Donald Trump a practitioner of the Big Lie?

ChatGPT
The term "Big Lie" has been used in political discourse to describe the repetition of a false narrative on a large scale. It's been associated with instances where false or misleading information is disseminated with the intent of influencing public opinion or undermining trust in institutions.

The phrase gained attention in the context of former U.S. President Donald Trump's repeated claims of widespread voter fraud in the 2020 U.S. presidential election. Trump and some of his supporters asserted, without providing substantial evidence, that the election had been stolen from him. Multiple audits, recounts, and court rulings confirmed the legitimacy of the election results, and the claims of widespread fraud were widely discredited.

The characterization of Donald Trump's statements as a "Big Lie" has been a matter of political debate and interpretation. Different individuals and groups may have varying opinions on the accuracy and intent of the statements made. It's essential to consider diverse perspectives and rely on factual information when evaluating such claims.

Truth matters

THAT WOULD BE AN EQUMENICAL MATIER!

Logic \& the search for truth

www.logicomix.com

ApISTALAS amxinis, ciaistas E. papanimition,

Logic \& the search for truth

Challenges to

- truth

Liar's Paradox: 'I am lying'

$\mathrm{P}: \quad$ Trump is lying.
 T: Putin is telling the truth.

Logic \& the search for truth

Challenges to

- truth

Liar's Paradox: 'I am lying'

- sets (membership \in)

Russell set $R=\{x \mid$ not $x \in x\}$

Logic \& the search for truth

Challenges to

- truth

Liar's Paradox: 'I am lying'

- sets (membership \in)

Russell set $R=\{x \mid$ not $x \in x\}$ $R \in R \Longleftrightarrow$ not $R \in R$

Logic \& the search for truth

Challenges to

- truth

Liar's Paradox: 'I am lying'

- sets (membership \in)

Russell set $R=\{x \mid$ not $x \in x\}$

- search (one by one)

Cantor: subsets of $\{0,1,2, \ldots\}$ are uncountable

$$
\begin{aligned}
& s_{1}=00000000000 \ldots \\
& s_{2}=11111111111 \ldots \\
& s_{3}=01010101010 \ldots \\
& s_{4}=10101010101 \ldots \\
& s_{5}=11010110101 \ldots \\
& s_{6}=00110110110 \ldots \\
& s_{7}=10001000100 \ldots \\
& s_{8}=00110011001 \ldots \\
& s_{9}=11001100110 \ldots \\
& s_{10}=11011100101 \ldots \\
& s_{11}=11010100100 \ldots \\
& s=10111010011 \ldots
\end{aligned}
$$

Logic \& the search for truth

Challenges to

- truth

Liar's Paradox: 'I am lying'

- sets (membership \in)

Russell set $R=\{x \mid$ not $x \in x\}$

- search (one by one)

Cantor: subsets of $\{0,1,2, \ldots\}$ are uncountable

- computability

Turing: Halting Problem is uncomputable

The Halting Problem

Given a program P and data D, return either 0 or 1 (as output), with 1 indicating that P halts on input D

$$
\operatorname{HP}(P, D):= \begin{cases}1 & \text { if } P \text { halts on } D \\ 0 & \text { otherwise }\end{cases}
$$

The Halting Problem

Given a program P and data D, return either 0 or 1 (as output), with 1 indicating that P halts on input D

$$
\operatorname{HP}(P, D):= \begin{cases}1 & \text { if } P \text { halts on } D \\ 0 & \text { otherwise }\end{cases}
$$

Theorem (Turing) No TM computes HP.
The proof is similar to the Liar's Paradox distributed as follows
H: 'L speaks the truth'
L: 'H lies'
with a spoiler L (exposing H as a fraud).

Proof of uncomputability

Given a TM P that takes two arguments, we show P does not compute HP by defining a TM \bar{P} such that

$$
P(\bar{P}, \bar{P}) \neq \operatorname{HP}(\bar{P}, \bar{P})
$$

Proof of uncomputability

Given a TM P that takes two arguments, we show P does not compute HP by defining a TM \bar{P} such that

$$
P(\bar{P}, \bar{P}) \neq \operatorname{HP}(\bar{P}, \bar{P}) .
$$

Let

$$
\bar{P}(D): \simeq \begin{cases}1 & \text { if } P(D, D)=0 \\ \text { loop } & \text { otherwise }\end{cases}
$$

and notice

$$
\begin{array}{rll}
\mathrm{HP}(\bar{P}, \bar{P}) & = \begin{cases}1 & \text { if } \bar{P} \text { halts on } \bar{P} \\
0 & \text { otherwise }\end{cases} \\
& = \begin{cases}1 & \text { if } P(\bar{P}, \bar{P})=0 \\
0 & \text { otherwise }\end{cases} & \text { (def of HP) } \\
\text { (def of } \bar{P})
\end{array}
$$

Semi-solvability of HP

There is a TM that meets the positive part of HP (looping exactly when HP asks for 0), in view of the existence of a

Universal Turing Machine: a TM U that runs P on D

$$
U(P, D) \simeq P(D)
$$

for any given TM P and data D.

Semi-solvability of HP

There is a TM that meets the positive part of HP (looping exactly when HP asks for 0), in view of the existence of a

Universal Turing Machine: a TM U that runs P on D

$$
U(P, D) \simeq P(D)
$$

for any given TM P and data D.
Turing 1950: Can machines think?
Let us fix our attention on one particular digital computer C. Is it true that by modifying this computer to have an adequate storage, suitably increasing its speed of action, and providing it with an appropriate programme, C can be made to play satisfactorily the part of A in the imitation game, the part of B being taken by a man?

Semi-solvability of HP

There is a TM that meets the positive part of HP (looping exactly when HP asks for 0), in view of the existence of a

Universal Turing Machine: a TM U that runs P on D

$$
U(P, D) \simeq P(D)
$$

for any given TM P and data D.
Turing 1950: CAN machines think?
Let us fix our attention on one particular digital computer C. Is it true that by modifying this computer to have an adequate storage, suitably increasing its speed of action, and providing it with an appropriate programme, C can be made to play satisfactorily the part of A in the imitation game, the part of B being taken by a man?

TMs can be quite complex.
But for many, halting is no problem - e.g. finite state machines.

Church-Turing thesis: Program \approx Turing machine

Finite state machine (fsm)

Finite state machine (fsm)

A fsm M is a triple [Trans, Final, Q0] where

- Trans is a list of triples [Q,X,Qn] such that M may, at state Q seeing symbol X, change state to $Q n$
- Final is a list of M's final (i.e. accepting) states
- Q0 is M's initial state.

```
E.g. Trans \(=[[q 0, a, q 0],[q 0, b, q 1],[q 1, b, q 1]]\)
    Final = [q1]
    Q0 = q0
```


From strings to fsm's

Encode strings as lists; e.g. 102 as $[1,0,2]$.

From strings to fsm's

Encode strings as lists; e.g. 102 as $[1,0,2]$.

From strings to fsm's

Encode strings as lists; e.g. 102 as $[1,0,2]$.

\% string2fsm(+String, ?TransitionSet, ?FinalStates) string2fsm([], [], [q0]). string2fsm([H|T], Trans, [Last]) :-

From strings to fsm's

Encode strings as lists; e.g. 102 as $[1,0,2]$.

\% string2fsm(+String, ?TransitionSet, ?FinalStates) string2fsm([], [], [q0]).
string2fsm([H|T], Trans, [Last]) :mkTL(T, [H], [[q0, H, [H]]], Trans, Last).
\% mkTL(+More, +LastSoFar, +TransSoFar, ?Trans, ?Last) mkTL([], L, Trans, Trans, L).
mkTL([H|T], L, TransSoFar, Trans, Last) :mkTL(T, [H|L], [[L, H, [H|L]]|TransSoFar], Trans, Last).

States as histories (in reverse)

More on states-as-histories

Encoding q0 as [] leads to the simplification

$$
\begin{aligned}
& \text { str2fsm(String, Trans, [Last]) :- } \\
& \text { mkTL(String, [], [], Trans, Last). }
\end{aligned}
$$

More on states-as-histories

Encoding q0 as [] leads to the simplification

$$
\begin{aligned}
& \text { str2fsm(String, Trans, [Last]) :- } \\
& \text { mkTL(String, [], [], Trans, Last). }
\end{aligned}
$$

States-as-histories works for finite languages,

More on states-as-histories

Encoding q0 as [] leads to the simplification

```
str2fsm(String, Trans, [Last]) :-
    mkTL(String, [], [], Trans, Last).
```

States-as-histories works for finite languages, but not say, $a^{*} b b^{*}$

More on states-as-histories

Encoding q0 as [] leads to the simplification

```
str2fsm(String, Trans, [Last]) :-
    mkTL(String, [], [], Trans, Last).
```

States-as-histories works for finite languages, but not say, $a^{*} b b^{*}$

for state-as-set-of-equivalent-histories, where equivalence has to do with acceptable futures ...

Exercise

Define a 4-ary predicate
accept (+Trans ,+Final ,+Q0,?String)
that is true exactly when [Trans, Final, QO] is a fsm that accepts String (encoded as a list).

Exercise

Define a 4-ary predicate
accept (+Trans,+Final, +Q0, ?String)
that is true exactly when [Trans, Final, QO] is a fsm that accepts String (encoded as a list).
That is, write a Prolog program to answer queries such as

$$
\begin{gathered}
?-\operatorname{accept}([[\mathrm{q} 0,0, \mathrm{q} 1],[\mathrm{q} 0,1, \mathrm{q} 1],[\mathrm{q} 1,0, \mathrm{q} 0],[\mathrm{q} 1,1, \mathrm{q} 0]], \\
[\mathrm{q} 1], \mathrm{q} 0,[1,0,0]) .
\end{gathered}
$$

true

Exercise

Define a 4-ary predicate
accept (+Trans,+Final, +Q0, ?String)
that is true exactly when [Trans, Final, QO] is a fsm that accepts String (encoded as a list).
That is, write a Prolog program to answer queries such as

$$
\begin{gathered}
?-\operatorname{accept}([[\mathrm{q} 0,0, \mathrm{q} 1],[\mathrm{q} 0,1, \mathrm{q} 1],[\mathrm{q} 1,0, \mathrm{q} 0],[\mathrm{q} 1,1, \mathrm{q} 0]], \\
[\mathrm{q} 1], \mathrm{q} 0,[1,0,0]) .
\end{gathered}
$$

true

test(String) :- string2fsm(String, Trans, Final), accept (Trans, Final, q0, String).

