Introduction

Key Phrases:

Can machines think?
- Turing test & ELIZA effect
- AI-complete

Agent & environment
- Cognitive Revolution & Big Data

Levels of intelligence
Can machines think? (Turing 1950)

Turing test: can C tell A from B?

From Wikipedia, (Juan Alberto Sánchez Margallo)

Intelligence operationalized: subject to testing
Can machines think? (Turing 1950)

Turing test: can C tell A from B?

Intelligence operationalized: subject to testing ... cheating?

From Wikipedia, (Juan Alberto Sánchez Margallo)
ELIZA (Weizenbaum, 1964-66) & artful deception

- use pattern matching and substitution to fake understanding

ELIZA effect: humans are inclined to see computers as humans

e.g. when ATM says “thank you”
ELIZA (Weizenbaum, 1964-66) & artful deception
- use pattern matching and substitution to fake understanding

ELIZA effect: humans are inclined to see computers as humans
e.g. when ATM says “thank you”

An AI problem is **AI-complete** if any AI problem is mechanically reducible to it (i.e., it is at least as hard as any other).

E.g. Natural Language Understanding

The town councilors refused to give the demonstrators a permit because they feared violence.

Who feared violence?

T. Winograd
ELIZA (Weizenbaum, 1964-66) & artful deception
- use pattern matching and substitution to fake understanding

ELIZA effect: humans are inclined to see computers as humans

e.g. when ATM says “thank you”

An AI problem is **AI-complete** if any AI problem is mechanically reducible to it (i.e., it is at least as hard as any other).

E.g. Natural Language Understanding

> The town councilors refused to give the demonstrators a permit because they advocated violence.

Who advocated violence?

T. Winograd
ELIZA (Weizenbaum, 1964-66) & artful deception
- use pattern matching and substitution to fake understanding

ELIZA effect: humans are inclined to see computers as humans

e.g. when ATM says “thank you”

An AI problem is **AI-complete** if any AI problem is mechanically reducible to it (i.e., it is at least as hard as any other).

E.g. Natural Language Understanding

The town councilors refused to give the demonstrators a permit because they advocated violence.

Who advocated violence?

T. Winograd

Caution: Programs may appear to work better than they do

Siri rage (Urban dictionary):

When you get enraged because Siri just doesn’t get it.
Locating intelligence (black box)

Poole & Mackworth

Intelligence: (abilities, goals, ..., experience) \mapsto action
Locating intelligence (black box)

Intelligence: (abilities, goals, . . ., experience) \rightarrow action

Turing test: what to say \rightsquigarrow what to do
Between agent and environment

<table>
<thead>
<tr>
<th>agent</th>
<th>environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>program</td>
<td>data</td>
</tr>
<tr>
<td>Cognitive Revolution</td>
<td>Big Data</td>
</tr>
<tr>
<td>hard-wired</td>
<td>experienced</td>
</tr>
<tr>
<td>rationalist</td>
<td>empiricist</td>
</tr>
<tr>
<td>nativist</td>
<td>behaviorist</td>
</tr>
<tr>
<td>innate</td>
<td>tabula rasa</td>
</tr>
<tr>
<td>nature</td>
<td>nurture</td>
</tr>
</tbody>
</table>

Turing machine &
specialized automaton
Between agent and environment

<table>
<thead>
<tr>
<th>agent</th>
<th>environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>program</td>
<td>data</td>
</tr>
<tr>
<td>Cognitive Revolution</td>
<td>Big Data</td>
</tr>
<tr>
<td>hard-wired</td>
<td>experienced</td>
</tr>
<tr>
<td>rationalist</td>
<td>empiricist</td>
</tr>
<tr>
<td>nativist</td>
<td>behaviorist</td>
</tr>
<tr>
<td>innate</td>
<td>tabula rasa</td>
</tr>
<tr>
<td>nature</td>
<td>nurture</td>
</tr>
</tbody>
</table>

Turing machine & specialized automaton

Learning (from environment)

trial & error: “data as oil”
Between agent and environment

<table>
<thead>
<tr>
<th>agent</th>
<th>environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>program</td>
<td>data</td>
</tr>
<tr>
<td>Cognitive Revolution</td>
<td>Big Data</td>
</tr>
<tr>
<td>hard-wired</td>
<td>experienced</td>
</tr>
<tr>
<td>rationalist</td>
<td>empiricist</td>
</tr>
<tr>
<td>nativist</td>
<td>behaviorist</td>
</tr>
<tr>
<td>innate</td>
<td>tabula rasa</td>
</tr>
<tr>
<td>nature</td>
<td>nurture</td>
</tr>
</tbody>
</table>

Turing machine &
specialized automaton

Learning (from environment)
trial & error: “data as oil”

Moving target: changing agent & environment
e.g. change in state
What & how

Real-world task

Modeling

Formal task (model)

Algorithms

Program

unstructured information \rightsquigarrow actionable knowledge

Demis Hassabis

www.theguardian.com/technology/2016/feb/16/demis-hassabis-artificial-intelligence-deepmind-alphago
We now embark on our tour of the topics in this course. The topics correspond to types of models that we can use to represent real-world tasks. The topics will in a sense advance from low-level intelligence to high-level intelligence, evolving from models that simply make a reflex decision to models that are based on logical reasoning.

Traditional approach

A spell checker:

- **input**: "hte"
- **output**: "the"

- **Problem**: complexity becomes unwieldy

Machine learning approach

- **Training examples**
 - hte \(\Rightarrow\) the
 - jeopardy \(\Rightarrow\) jeopardy
 - affedave \(\Rightarrow\) affidavit
 - misilous \(\Rightarrow\) miscellaneous

- **Learning algorithm**

- **input**: simple program
 - parameters = [3.2, 1.2, ...]

- **output**:
We now embark on our tour of the topics in this course. The topics correspond to types of models that we can use to represent real-world tasks. The topics will in a sense advance from low-level intelligence to high-level intelligence, evolving from models that simply make a reflex decision to models that are based on logical reasoning.

Traditional approach

A spell checker:

Input: "hte"

Complex program

Output: "the"

Problem: complexity becomes unwieldy

Machine learning approach

Training examples

htε ⇒ the
jeapardy ⇒ jeopardy
affedave ⇒ affidavit
misilous ⇒ miscellaneous

Learning algorithm

Simple program

Parameters = [3.2, 1.2, ...]

Input

Output

Search problems

Markov decision processes

Adversarial games

Constraint satisfaction problems

Bayesian networks

Logic

Reflex States Variables Logic

"Low-level intelligence"

"High-level intelligence"

Machine learning
Back in Trinity

Undergraduate ML modules

- CS4404 Machine Learning
 Michaelmas Term (5 ECTS)

- CS4LL5 Advanced Computational Linguistics
 Michaelmas Term (5 ECTS)
 unsupervised ML for natural language processing
Back in Trinity

Undergraduate ML modules

- CS4404 Machine Learning
 Michaelmas Term (5 ECTS)

- CS4LL5 Advanced Computational Linguistics
 Michaelmas Term (5 ECTS)
 unsupervised ML for natural language processing

CS3061: a taste building on CS3011 (Prolog)

- logic & agents as Turing machines
- search
 + Q-learning & Markov decision processes
- Constraint satisfaction
 + Bayesian networks