A finite-state transducer (FST) is a finite automaton with the labels on its transitions doubled and allowed to be \(\epsilon \), for a transition table \(\delta \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times (\Sigma \cup \{\epsilon\}) \times Q \) with

\[
\delta(q, x, x', q') \text{ written } q \xrightarrow{x:x'} q'.
\]

The fst \(\langle \rightarrow, F \rangle \) computes the relation

\[
\{(x_1 \ldots x_n, x'_1 \ldots x'_n) \in \Sigma^* \times \Sigma^* \mid (\exists q_1 \ldots q_n) \ q_0 \xrightarrow{x_1:x'_1} q_1 \xrightarrow{x_2:x'_2} \ldots \xrightarrow{x_n:x'_n} q_n \in F\}.
\]
A finite-state transducer (FST) is a finite automaton with the labels on its transitions doubled and allowed to be ϵ, for a transition table $\delta \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times (\Sigma \cup \{\epsilon\}) \times Q$ with

$$\delta(q, x, x', q') \text{ written } q \xrightarrow{x:x'} q'.$$

The fst $\langle \rightarrow, F \rangle$ computes the relation

$$\{(x_1 \ldots x_n, x'_1 \ldots x'_n) \in \Sigma^* \times \Sigma^* \mid (\exists q_1 \ldots q_n) \ q_0 \xrightarrow{x_1:x'_1} q_1 \xrightarrow{x_2:x'_2} \ldots \xrightarrow{x_n:x'_n} q_n \in F\}.$$

N.B. $x_1 \ldots x_n$ and $x'_1 \ldots x'_n$ may have different lengths, as an x_i and/or x'_i can be ϵ (of length 0).
A finite-state transducer (FST) is a finite automaton with the labels on its transitions doubled and allowed to be ϵ, for a transition table $\delta \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times (\Sigma \cup \{\epsilon\}) \times Q$ with

$$\delta(q, x, x', q') \text{ written } q \xrightarrow{x:x'} q'.$$

The fst $\langle \rightarrow, F \rangle$ computes the relation

$$\left\{ \left(x_1 \ldots x_n, x_1' \ldots x'_n \right) \in \Sigma^* \times \Sigma^* \mid \left(\exists q_1 \ldots q_n \right) q_0 \xrightarrow{x_1:x_1'} q_1 \xrightarrow{x_2:x_2'} q_2 \ldots \xrightarrow{x_n:x'_n} q_n \in F \right\}.$$

N.B. $x_1 \ldots x_n$ and $x_1' \ldots x'_n$ may have different lengths, as an x_i and/or x'_i can be ϵ (of length 0).

A relation between strings is regular if it is computed by some fst.
Define

\[\text{fst}(\text{+Input}, \text{+Trans}, \text{+Final}, \text{?-Output}) \]

\textbf{Caution:} consider \text{fst} computing \(1 \times 1^+ \) given by

\[\text{Trans} = [[q0, [], 1, q0], [q0, 1, 1, q1]] \]

\[\text{Final} = [q1] \]

That is, the length \(n \) of a pair \((x_1 \ldots x_n, x'_1 \ldots x'_n)\) no longer bounds a run computing it.
Some regular relations

1. The \textit{factor} relation

\[s \text{ hasFactor } s' \iff (\exists u, v) \ s = us'v \]
Some regular relations

1. The *factor* relation

\[s \text{ hasFactor } s' \iff (\exists u, v) \ s = us'v \]

2. The *accepting runs of* a finite automaton \(\rightarrow, F \)

\[\{ \langle a_1 a_2 \cdots a_n, q_1 q_2 \cdots q_n \rangle \mid q_0 \overset{a_1}{\rightarrow} q_1 \overset{a_2}{\rightarrow} q_2 \cdots \overset{a_n}{\rightarrow} q_n \in F \} \]

mixing symbols/actions \(a_i \) with states/situations \(q_i \)
Some regular relations

1. The *factor* relation

\[s \text{ hasFactor } s' \iff (\exists u, v) \ s = us'v \]

2. The *accepting runs of* a finite automaton \(\rightarrow, F \)

\[\{ \langle a_1a_2 \cdots a_n, q_1q_2 \cdots q_n \rangle \mid q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} q_2 \cdots \xrightarrow{a_n} q_n \in F \} \]

mixing symbols/actions \(a_i \) with states/situations \(q_i \)

3. The *diagonal* \(\Delta_L \) of a regular language \(L \)

\[\Delta_L := \{(s, s) \mid s \in L\} \]
Some regular relations

1. The factor relation

\[s \text{ hasFactor } s' :\Leftrightarrow (\exists u, v) \ s = us'v \]

2. The accepting runs of a finite automaton \(\rightarrow, F \)

\[\{ \langle a_1a_2\cdots a_n, q_1q_2\cdots q_n \rangle \mid q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} q_2 \cdots \xrightarrow{a_n} q_n \in F \} \]

mixing symbols/actions \(a_i \) with states/situations \(q_i \)

3. The diagonal \(\Delta_L \) of a regular language \(L \)

\[\Delta_L := \{(s, s) \mid s \in L\} \]

4. \textit{A-string-meronym} \(\geq_A \) on \((2^A)^* \)

\[\alpha_1 \cdots \alpha_n \geq_A x_1 \cdots x_n :\Leftrightarrow x_i = \epsilon \text{ or } x_i \subseteq \alpha_i \text{ for } 1 \leq i \leq n \]

for \(\alpha_1 \cdots \alpha_n \in (2^A)^* \).
Some closure properties

1. If R is regular, so is its inverse R^{-1}.
Some closure properties

1. If R is regular, so is its inverse R^{-1}.
2. If R and R' are regular, so are its union $R \cup R'$ and relational composition

\[
R; R' := \{(s, s') \mid (\exists s_0) \ sR s_0 \text{ and } s_0 R' s'\}
\]
Some closure properties

1. If \(R \) is regular, so is its inverse \(R^{-1} \).
2. If \(R \) and \(R' \) are regular, so are its union \(R \cup R' \) and relational composition

\[
R \cdot R' := \{(s, s') \mid (\exists s_0) sR s_0 \text{ and } s_0 R' s'\}.
\]

3. The restriction \(R_L \) of a regular relation \(R \) to a regular language \(L \)

\[
R_L := \{(s, s') \in R \mid s \in L\}
\]
Some closure properties

1. If \(R \) is regular, so is its inverse \(R^{-1} \).

2. If \(R \) and \(R' \) are regular, so are its union \(R \cup R' \) and relational composition

\[
R; R' := \{(s, s') \mid (\exists s_0) sRs_0 \text{ and } s_0R's'\}.
\]

3. The restriction \(R_L \) of a regular relation \(R \) to a regular language \(L \)

\[
R_L := \{(s, s') \in R \mid s \in L\}
\]

If \(R \) is a regular relation, then its image \(\{s' \mid (\exists s) sRs'\} \) is regular including

\[
L \cap L' = \text{image}(\Delta_L; \Delta_{L'})
\]

and the Peirce product

\[
R^{-1}L := \{s \mid (\exists s' \in L) sRs'\} = \text{image}(R^{-1}L)
\]
Regular relations are not Boolean-closed

Regular relations are *not* closed under intersection —

\[
\{\langle 0^n, 1^n2^m \rangle \mid n \geq 0, m \geq 0\} \text{ and } \{\langle 0^n, 1^m2^n \rangle \mid n \geq 0, m \geq 0\}
\]

are regular, but their intersection has image \(\sum_{n\geq0} 1^n2^n\).
Regular relations are not Boolean-closed

Regular relations are not closed under intersection —

\[\{\langle 0^n, 1^n2^m \rangle \mid n \geq 0, m \geq 0 \} \quad \text{and} \quad \{\langle 0^n, 1^m2^n \rangle \mid n \geq 0, m \geq 0 \} \]

are regular, but their intersection has image \(\sum_{n \geq 0} 1^n2^n \).

Hence, the complement \(\overline{R} \) of a regular relation \(R \) need not be regular, as

\[R \cap R' = \overline{R \cup R'} \]
moveRight\((q, a, q')\) \[\vec{la}q'\vec{r} \rightsquigarrow \vec{la}q\vec{r}\]

moveLeft\((q, a, q')\) \[\vec{la}'q\vec{r} \rightsquigarrow \vec{l}q'a'a\vec{r}\]

write\((q, a, a', q')\) \[\vec{l}q\vec{r} \rightsquigarrow \vec{l}q'a'\vec{r}\]
TM-actions via finite-state transducers

moveRight\((q, a, q')\) \hspace{1cm} \mathbf{\vec{l}}\mathbf{q}\mathbf{a}\mathbf{r} \rightsquigarrow \mathbf{\vec{l}}\mathbf{a}\mathbf{q}\mathbf{r}'

moveLeft\((q, a, q')\) \hspace{1cm} \mathbf{\vec{l}}'\mathbf{a}\mathbf{q}\mathbf{a}\mathbf{r} \rightsquigarrow \mathbf{\vec{l}}'\mathbf{q}\mathbf{a}\mathbf{a}\mathbf{r}'

write\((q, a, a', q')\) \hspace{1cm} \mathbf{\vec{l}}\mathbf{q}\mathbf{a}\mathbf{r} \rightsquigarrow \mathbf{\vec{l}}'\mathbf{q}\mathbf{a}\mathbf{a}\mathbf{r}'

tape infinite to the right \hspace{1cm} \mathbf{\vec{l}}\mathbf{q} \approx \mathbf{\vec{l}}\mathbf{q}\#

tape infinite to the left \hspace{1cm} \mathbf{\vec{q}}\mathbf{r} \approx \mathbf{\vec{#}}\mathbf{q}\mathbf{r}
TM-actions via finite-state transducers

moveRight\((q, a, q')\) \[\tilde{l}q a \tilde{r} \leadsto \tilde{l}a q' \tilde{r} \]
moveRight\((q, \#, q')\) \[\tilde{l}q \leadsto \tilde{l}\# q' \]
moveLeft\((q, a, q')\) \[\tilde{l}a' q a \tilde{r} \leadsto \tilde{l}q' a' a \tilde{r} \]
moveLeft\((q, a, q')\) \[q a \tilde{r} \leadsto q' \# a \tilde{r} \]
moveLeft\((q, \#, q')\) \[\tilde{l}a q \leadsto \tilde{l}q' a \]
moveLeft\((q, \#, q')\) \[q \leadsto q' \]
write\((q, a, a', q')\) \[\tilde{l}q a \tilde{r} \leadsto \tilde{l}q' a' \tilde{r} \]
write\((q, \#, a, q')\) \[\tilde{l}q \leadsto \tilde{l}q' a \]

tape infinite to the right \[\tilde{l}q \approx \tilde{l}q\# \]
tape infinite to the left \[q \tilde{r} \approx \# q \tilde{r} \]
TM-actions via finite-state transducers

moveRight(\(q, a, q'\)) \(\vec{l}qa\vec{r} \rightsquigarrow \vec{l}aq'\vec{r}\)
moveRight(\(q, \#, q'\)) \(\vec{l}q \rightsquigarrow \vec{l}\#q'\)
moveLeft(\(q, a, q'\)) \(\vec{l}a'qa\vec{r} \rightsquigarrow \vec{l}q'a'ar\vec{r}\)
moveLeft(\(q, a, q'\)) \(qa\vec{r} \rightsquigarrow q'\#a\vec{r}\)
moveLeft(\(q, \#, q'\)) \(\vec{l}aq \rightsquigarrow \vec{l}q'a\)
moveLeft(\(q, \#, q'\)) \(q \rightsquigarrow q'\)
write(\(q, a, a', q'\)) \(\vec{l}qa\vec{r} \rightsquigarrow \vec{l}q'a'\vec{r}\)
write(\(q, \#, a, q'\)) \(\vec{l}q \rightsquigarrow \vec{l}q'a\)

tape infinite to the right \(\vec{l}q \approx \vec{l}q\#\)
tape infinite to the left \(q\vec{r} \approx \#q\vec{r}\)

For any Turing machine \(M\), \(\text{step}_M\) is regular (finite tuples)
Finite-state approximations

Output extraction \(\rightsquigarrow \) via finite-state transducer

\[
\text{halt}(q, a) \quad \vec{t}qar \rightsquigarrow \text{unpad}(\vec{t}ar)
\]

\[
\text{halt}(q, \#) \quad \vec{t}q \rightsquigarrow \text{unpad}(\vec{t})
\]

\(n \)-step approximation of a TM \(M \)

\[
M_n := \{(s, s') \mid \exists x, q_0 s \text{ step}^n_M x \rightsquigarrow s' \}
\]

Bounded iterations (time-out clock) are regular

\[
\text{input/output}(M) = \bigcup_{n \geq 0} M_n
\]