Proofs

➤ A proof is a mechanically derivable demonstration that a formula logically follows from a knowledge base.

➤ Given a proof procedure, \(KB \models g \) means \(g \) can be derived from knowledge base \(KB \).

➤ Recall \(KB \models g \) means \(g \) is true in all models of \(KB \).

➤ A proof procedure is sound if \(KB \models g \) implies \(KB \models g \).

➤ A proof procedure is complete if \(KB \models g \) implies \(KB \models g \).
One rule of derivation, a generalized form of modus ponens:

If “$h \leftarrow b_1 \land \ldots \land b_m$” is a clause in the knowledge base, and each b_i has been derived, then h can be derived.

You are forward chaining on this clause.

(This rule also covers the case when $m = 0$.)
Bottom-up proof procedure

$KB \vdash g$ if $g \in C$ at the end of this procedure:

$C := \{\};$

repeat

 select clause “$h \leftarrow b_1 \land \ldots \land b_m$” in KB such that

 $b_i \in C$ for all i, and

 $h \notin C$;

 $C := C \cup \{h\}$

 until no more clauses can be selected.
Example

\[
a \leftarrow b \land c.
\]

\[
a \leftarrow e \land f.
\]

\[
b \leftarrow f \land k.
\]

\[
c \leftarrow e.
\]

\[
d \leftarrow k.
\]

\[
e.
\]

\[
f \leftarrow j \land e.
\]

\[
f \leftarrow c.
\]

\[
j \leftarrow c.
\]
Soundness of bottom-up proof procedure

If $KB \vdash g$ then $KB \models g$.

Suppose there is a g such that $KB \vdash g$ and $KB \not\models g$.

Let h be the first atom added to C that’s not true in every model of KB. Suppose h isn’t true in model I of KB. There must be a clause in KB of form

$$h \leftarrow b_1 \land \ldots \land b_m$$

Each b_i is true in I. h is false in I. So this clause is false in I. Therefore I isn’t a model of KB.

Contradiction: thus no such g exists.
Fixed Point

The C generated at the end of the bottom-up algorithm is called a fixed point.

Let I be the interpretation in which every element of the fixed point is true and every other atom is false.

I is a model of KB.

Proof: suppose $h \leftarrow b_1 \land \ldots \land b_m$ in KB is false in I. Then h is false and each b_i is true in I. Thus h can be added to C. Contradiction to C being the fixed point.

I is called a Minimal Model.
Completeness

If $KB \models g$ then $KB \vdash g$.

Suppose $KB \models g$. Then g is true in all models of KB.

Thus g is true in the minimal model.

Thus g is generated by the bottom up algorithm.

Thus $KB \vdash g$.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002