A **semantics** specifies the meaning of sentences in the language.

An **interpretation** specifies:

- what objects (individuals) are in the world
- the correspondence between symbols in the computer and objects & relations in world
 - constants denote individuals
 - predicate symbols denote relations
Formal Semantics

An interpretation is a triple $I = \langle D, \phi, \pi \rangle$, where

- D, the domain, is a nonempty set. Elements of D are individuals.

- ϕ is a mapping that assigns to each constant an element of D. Constant c denotes individual $\phi(c)$.

- π is a mapping that assigns to each n-ary predicate symbol a relation: a function from D^n into $\{TRUE, FALSE\}$.
Example Interpretation

Constants: phone, pencil, telephone.

Predicate Symbol: noisy (unary), left_of (binary).

\[D = \{ \text{📞, 📞, ✏️} \}. \]

\[\phi(\text{phone}) = \text{📞}, \phi(\text{pencil}) = \text{✏️}, \phi(\text{telephone}) = \text{📞}. \]

\[\pi(\text{noisy}): \begin{array}{ccc} \langle \text{📞} \rangle & \text{FALSE} & \langle \text{☎} \rangle & \text{TRUE} & \langle \text{✎} \rangle & \text{FALSE} \end{array} \]

\[\pi(\text{left_of}): \]

\[\begin{array}{ccc} \langle \text{📞, ✏️} \rangle & \text{FALSE} & \langle \text{📞, ☎} \rangle & \text{TRUE} & \langle \text{📞, ✏️} \rangle & \text{TRUE} \\ \langle \text{☎, ✏️} \rangle & \text{FALSE} & \langle \text{☎, ☎} \rangle & \text{FALSE} & \langle \text{☎, ✏️} \rangle & \text{TRUE} \\ \langle \text{✎, ✏️} \rangle & \text{FALSE} & \langle \text{✎, ☎} \rangle & \text{FALSE} & \langle \text{✎, ✏️} \rangle & \text{FALSE} \end{array} \]
Important points to note

➤ The domain D can contain real objects. (e.g., a person, a room, a course). D can’t necessarily be stored in a computer.

➤ $\pi(p)$ specifies whether the relation denoted by the n-ary predicate symbol p is true or false for each n-tuple of individuals.

➤ If predicate symbol p has no arguments, then $\pi(p)$ is either $TRUE$ or $FALSE$.
Truth in an interpretation

A constant \(c \) denotes in \(I \) the individual \(\phi(c) \).

Ground (variable-free) atom \(p(t_1, \ldots, t_n) \) is

- true in interpretation \(I \) if \(\pi(p)(t'_1, \ldots, t'_n) = \text{TRUE} \), where \(t_i \) denotes \(t'_i \) in interpretation \(I \) and
- false in interpretation \(I \) if \(\pi(p)(t'_1, \ldots, t'_n) = \text{FALSE} \).

Ground clause \(h \leftarrow b_1 \land \ldots \land b_m \) is false in interpretation \(I \) if \(h \) is false in \(I \) and each \(b_i \) is true in \(I \), and is true in interpretation \(I \) otherwise.
Example Truths

In the interpretation given before:

\[\text{noisy(phone)} \quad \text{true} \]
\[\text{noisy(telephone)} \quad \text{true} \]
\[\text{noisy(pencil)} \quad \text{false} \]
\[\text{left_of(phone, pencil)} \quad \text{true} \]
\[\text{left_of(phone, telephone)} \quad \text{false} \]
\[\text{noisy(pencil)} \leftarrow \text{left_of(phone, telephone)} \quad \text{true} \]
\[\text{noisy(pencil)} \leftarrow \text{left_of(phone, pencil)} \quad \text{false} \]
\[\text{noisy(phone)} \leftarrow \text{noisy(telephone)} \land \text{noisy(pencil)} \quad \text{true} \]
A knowledge base, KB, is true in interpretation I if and only if every clause in KB is true in I.

A model of a set of clauses is an interpretation in which all the clauses are true.

If KB is a set of clauses and g is a conjunction of atoms, g is a logical consequence of KB, written $KB \models g$, if g is true in every model of KB.

That is, $KB \models g$ if there is no interpretation in which KB is true and g is false.
Simple Example

\[KB = \begin{cases}
 p \leftarrow q. \\
 q. \\
 r \leftarrow s.
\end{cases} \]

<table>
<thead>
<tr>
<th></th>
<th>(\pi(p))</th>
<th>(\pi(q))</th>
<th>(\pi(r))</th>
<th>(\pi(s))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_1)</td>
<td>TRUE</td>
<td>TRUE</td>
<td>TRUE</td>
<td>TRUE</td>
</tr>
<tr>
<td>(I_2)</td>
<td>FALSE</td>
<td>FALSE</td>
<td>FALSE</td>
<td>FALSE</td>
</tr>
<tr>
<td>(I_3)</td>
<td>TRUE</td>
<td>TRUE</td>
<td>FALSE</td>
<td>FALSE</td>
</tr>
<tr>
<td>(I_4)</td>
<td>TRUE</td>
<td>TRUE</td>
<td>TRUE</td>
<td>FALSE</td>
</tr>
<tr>
<td>(I_5)</td>
<td>TRUE</td>
<td>TRUE</td>
<td>FALSE</td>
<td>TRUE</td>
</tr>
</tbody>
</table>

\(KB \models p, \ KB \models q, \ KB \not\models r, \ KB \not\models s \)
User’s view of Semantics

1. Choose a task domain: intended interpretation.

2. Associate constants with individuals you want to name.

3. For each relation you want to represent, associate a predicate symbol in the language.

4. Tell the system clauses that are true in the intended interpretation: axiomatizing the domain.

5. Ask questions about the intended interpretation.

6. If $KB \models g$, then g must be true in the intended interpretation.
Computer’s view of semantics

➤ The computer doesn’t have access to the intended interpretation.

➤ All it knows is the knowledge base.

➤ The computer can determine if a formula is a logical consequence of KB.

➤ If $KB \models g$ then g must be true in the intended interpretation.

➤ If $KB \not\models g$ then there is a model of KB in which g is false. This could be the intended interpretation.