Faculty of Engineering, Mathematics and Science
School of Computer Science & Statistics

Integrated Computer Science Programme
B.A. (Mod.) Business & Computing
B.A. (Mod.) Computer Science & Language
Year 3 Annual Examinations

Artificial Intelligence I

18 May 2016
Sports Centre
14:00 – 16:00

Dr Tim Fernando

Instructions to Candidates:
Attempt two questions. All questions carry equal marks. Each question is scored out of a total of 50 marks.

You may not start this examination until you are instructed to do so by the Invigilator.

Materials permitted for this examination:
Non-programmable calculators are permitted for this examination — please indicate the make and model of your calculator on each answer book used.
1. AI is all about the problem of (†) an agent acting intelligently in its environment.

(a) What is the **Symbol System hypothesis** and what does it have to do with (†)?

[5 marks]

(b) What is **non-determinism** and what does it have to do with (†)? What does search have to do with non-determinism?

[8 marks]

(c) State precisely the sense in which Cantor’s theorem says that the set of infinite bit strings cannot be searched.

[5 marks]

(d) Turning from infinite bit strings to finite bit strings, what is the problem SAT of Boolean satisfiability, and what does it have to do with finite bit strings? How is exponentiation relevant to the question of SAT and polynomial-time computability?

[12 marks]

(e) What is a **binary decision diagram** (BDD) and what does it mean to be ordered and reduced? Give an ordered and reduced BDD equivalent to the Boolean expression

\[(x_1 \text{ or } x_2) \text{ and } (\overline{x_1} \text{ or } \overline{x_2})\]

under the variable ordering \(x_1 < x_2\). When is an ordered and reduced BDD satisfiable?

[20 marks]
2. A simple way in Prolog to search a graph for a goal is as follows.

\[
\text{search}(\text{Node}) :- \text{goal}(\text{Node}). \\
\text{search}(\text{Node}) :- \text{arc}(\text{Node}, \text{Next}), \text{search}(\text{Next}).
\]

(a) Non-determinism in \text{arc}(\text{Node}, \text{Next}) above is searched depth-first. For breadth-first search, let \text{searchBF}(\text{Node}) call the predicate \text{searchL}([\text{Node}]) on lists below, which is identical to \text{search} except the predicates \text{goal}(\text{Node}) and \text{arc}(\text{Node}, \text{Next}) are revised to predicates \text{goalL}(\text{List}) and \text{arcL}(\text{List}, \text{NextList}) on lists.

\[
\text{searchBF}(\text{Node}) :- \text{searchL}([\text{Node}]). \\
\text{searchL}(\text{List}) :- \text{goalL}(\text{List}). \\
\text{searchL}(\text{List}) :- \text{arcL}(\text{List}, \text{NextList}), \text{searchL}(\text{NextList}).
\]

Define \text{goalL}(\text{List}) and \text{arcL}(\text{List}, \text{NextList}), assuming the predicates \text{goal}(\text{Node}) and \text{arc}(\text{Node}, \text{Next}) are already defined.

[5 marks]

(b) We can revise \text{searchL}(\text{List}) above to a frontier search \text{seek}(\text{List}) below treating \text{List} as a frontier as follows, where the predicate \text{add2frontier}(\text{Children}, \text{More}, \text{New}) builds a new frontier \text{New} from \text{Children} and \text{More} in some way.

\[
\text{seek}([\text{Node}|_]) :- \text{goal}(\text{Node}). \\
\text{seek}([\text{Node}|\text{More}]) :- \text{findall}(\text{Next}, \text{arc}(\text{Node}, \text{Next}), \text{Children}), \\
\text{add2frontier}(\text{Children}, \text{More}, \text{New}), \\
\text{seek}(\text{New}).
\]

What more do we need to turn \text{seek}(\text{List}) into best-first search? Outline the modifications to \text{seek}(\text{List}) that are required to implement best-first search.

[15 marks]

(c) How does A-star differ from best-first? What does it mean for A-star to be admissible?

[10 marks]

(d) Recall that a Constraint Satisfaction Problem (CSP) is given by

- a finite list \([X1, ..., Xn]\) of variables \(Xi\)
a finite list \(C \) of constraints with variables from \([X_1, \ldots, X_n]\)
a list \([D_1, \ldots, D_n]\) of sets \(D_i \)

and asks if there is an instantiation of variables \(X_i \) with values in \(D_i \) satisfying every constraint in \(C \).

(i) The brute-force generate-and-test approach to CSP instantiates every variable \(X_i \) before testing constraints

\[
\text{genTest}(D_1, \ldots, D_n) :- \text{node}(X_1, \ldots, X_n, D_1, \ldots, D_n), \\
\text{testC}(X_1, \ldots, X_n).
\]

\[
\text{node}(X_1, \ldots, X_n, D_1, \ldots, D_n) :- \text{member}(X_1, D_1), \ldots, \\
\text{member}(X_n, D_n).
\]

Assuming each set \(D_i \) has size \(s_i \), how many nodes \([X_1, \ldots, X_n]\) are there to test? What happens to the number of nodes if we change the notion of a node so that it need only instantiate a subset of \(\{X_1, \ldots, X_n\} \) (leaving other variables un-instantiated)?

[5 marks]

(ii) Working with the latter notion of a node (as instantiating a subset of \(\{X_1, \ldots, X_n\} \)), suppose

* a node is a goal node precisely if it instantiates all variables \(X_1, \ldots, X_n \) and satisfies every constraint in \(C \)

* whenever there is an arc from node \(N \) to node \(N' \), \(N' \) is not equal to \(N \) but instantiates every variable that \(N \) instantiates and gives it the value that \(N \) gives it.

Specify the depth and branching factor of the graph with start node \(\emptyset \), where \(\emptyset \) instantiates none of the variables.

[5 marks]

(iii) Keeping the assumptions in part (ii), consider the heuristic function that maps a node to the number of variables it does not instantiate. Under what conditions (on arcs and arc costs) is this heuristic function an underestimate? Describe what best-first search does under these conditions.

[10 marks]
3. (a) Recall that 3-coloring is the problem of assigning one of 3 colors (say, red, blue, green) to every node in a finite graph so that there is no arc between nodes of the same color. This question asks you to associate a Representation and Reasoning System (RRS) with this problem — or at least, the first two components of an RRS

(i) a formal language specifying legal sentences, and

(ii) semantics: specifying the meaning of the symbols.

More precisely, to illustrate (i), give an example of

- a sentence expressing a constraint for 3-coloring

and to illustrate (ii), give an example of

- an interpretation specifying the meaning of that sentence.

(b) What does it mean for a clause \(C \) to be a logical consequence of a knowledge base \(KB \) (written \(KB \models C \))? Is this any different from saying the knowledge base \(KB \) with the additional clause \(C \) is satisfiable? Explain.

(c) What does it mean for a reasoning system \(\models \) to be sound? What does it mean for a reasoning system \(\models \) to be complete?

Use soundness and completeness to show that conditions (i) and (ii) below are equivalent. (That is, show (i) implies (ii), and conversely, (ii) implies (i).)

(i) \(KB \models \text{false} \)

(ii) there is no interpretation where all clauses in \(KB \) are true

(d) Consider the knowledge base

\[
\text{false :- p,q.} \\
\text{false :- a.} \\
\text{q :- p,a.} \\
\text{a :- r.}
\]
Suppose \(p, r \) were assumable in the knowledge base above. What are the conflicts? What are the minimal conflicts?

(e) What does it mean for a reasoning system \(\vdash \) to be non-monotonic? Does the clause \(\texttt{false} :- q \) lead to non-monotonicity? Does negation-as-failure lead to non-monotonicity? Explain.

(f) What is abduction and how does it differ from deduction?