Combining Dynamic programming and approximation architectures

AI & Agents for IET
Lecturer: S Luz

http://www.scss.tcd.ie/~luzs/t/cs7032/

December 10, 2013

Combining TD and function approximation

- Basic idea: use supervised learning to provide an approximation of the value function for TD learning
- The approximation architecture is should generalise over (possibly unseen) states

Why use approximation architectures

- To cope with the curse of dimensionality
- by generalising over states
 - Note that the algorithms we have seen so far (DP, TD, Sarsa, Q-learning) all use tables to store states (or state-action tuples)
 - This works well if the number of states is relatively small
 - But it doesn’t scale up very well
- (We have already seen examples of approximation architectures: the draughts player, the examples in the neural nets lecture.)
Gradient descent methods

- The LMS algorithm use for draughts illustrates a gradient descent method (to approximate a linear function)

- Goal: to learn the parameter vector

\[
\vec{\theta}_t = (\theta_t(1), \theta_t(2), \theta_t(3), \ldots, \theta_t(m))
\]

by adjusting them at each iteration towards reducing the error:

\[
\vec{\theta}_{t+1} = \vec{\theta}_t - \frac{1}{2} \alpha \nabla \vec{\theta}_t (V^\pi(s_t) - V_t(s_t))^2
\]

where \(V_t \) is a smooth, differentiable function of \(\vec{\theta}_t \).

Backward view and update rule

- The problem with (2) is that the target value \((V^\pi) \) is typically not available.

- Different methods replace their estimates for this value function:
 - So Monte Carlo, for instance, would use the return \(R_t \)
 - And the TD(\(\lambda \)) method uses \(R^\lambda_t \):

\[
\vec{\theta}_{t+1} = \vec{\theta}_t + \alpha (R^\lambda_t - V_t(s_t)) \nabla \vec{\theta}_t V_t(s_t)
\]

- The backward view is given by:

\[
\vec{\theta}_{t+1} = \vec{\theta}_t + \alpha \delta \vec{e}_t
\]

where \(\vec{e}_t \) is a vector of eligibility traces (one for each component of \(\vec{\theta}_t \)), updated by

\[
\vec{e}_{t} = \gamma \lambda \vec{e}_{t-1} + \nabla \vec{\theta}_t V_t(s_t)
\]

Value estimation with approximation

Algorithm 1: On-line gradient descent TD(\(\lambda \))

```
1 Initialize \( \vec{\theta} \) arbitrarily
2 \( \vec{e} \leftarrow 0 \)
3 \( s \leftarrow \text{initial state of episode} \)
4 repeat (for each step of episode)
5 choose \( a \) according to \( \pi \)
6 perform \( a \), observe \( r, s' \)
7 \( \delta \leftarrow r + \gamma V(s') - V(s) \)
8 \( \vec{e} \leftarrow \gamma \lambda \vec{e} + \nabla \vec{\theta} V(s) \)
9 \( \vec{\theta} \leftarrow \vec{\theta} + \alpha \delta \vec{e} \)
10 \( s \leftarrow s' \)
11 until \( s \) is terminal state
```

- Methods commonly used to compute the gradients \(\nabla \vec{\theta} V(s) \):
 - error back-propagation (multilayer NNs), or by
 - linear approximators (for value functions of the form \(V_t(s) = (\vec{\theta}_t)^T \vec{f} = \sum_{i=1}^{n} \theta_t(i)f(i) \) (where \((\vec{\theta}_t)^T \) denotes the transpose of \(\vec{\theta}_t \))
Control with approximation

- The general (forward view) update rule for action-value prediction (by gradient descent) can be written:

\[
\vec{\theta}_{t+1} = \vec{\theta}_t + \alpha (R^\lambda_t - Q_t(s_t, a_t)) \nabla_{\vec{\theta}} Q_t(s_t, a_t)
\]

(7)

(recall that \(V_t\) is determined by \(\vec{\theta}_t\))

- So the backward view can be expressed as before:

\[
\vec{\theta}_{t+1} = \vec{\theta}_t + \alpha \delta_i \vec{e}_t
\]

(8)

where

\[
\vec{e}_t = \gamma \lambda \vec{e}_{t-1} + \nabla_{\vec{\theta}} Q_t(s_t, a_t)
\]

(9)

An algorithm: gradient descent Q-learning

Algorithm 2: Linear Gradient Descent Q(\(\lambda\))

1. Initialise \(\theta\) arbitrarily
2. for each episode
3. \(\vec{e} \leftarrow 0\); initialise \(s, a\)
4. \(F_s \leftarrow\) set of features in \(s, a\)
5. repeat (for each step of episode)
6. for all \(i \in F_s\): \(e(i) \leftarrow e(i) + 1\)
7. perform \(a\), observe \(r, s\)
8. \(\delta \leftarrow r - \sum_{i \in F_s} \theta(i)\)
9. for all \(a \in A\)
10. \(F_a \leftarrow\) set of features in \(s, a\)
11. \(Q_a \leftarrow \sum_{i \in F_a} \theta(i)\)
12. \(\delta \leftarrow \delta + \gamma \max_a Q_a\)
13. \(\vec{\theta} \leftarrow \vec{\theta} + \alpha \delta \vec{e}\)
14. with probability \(1 - \epsilon\)
15. for all \(a \in A\)
16. \(Q_a \leftarrow \sum_{i \in F_a} \theta(i)\)
17. \(a \leftarrow \text{arg max}_a Q_a\)
18. \(\vec{e} \leftarrow \gamma \lambda \vec{e}\)
19. else
20. \(a \leftarrow\) a random action
21. \(\vec{e} \leftarrow 0\)
22. until \(s\) is terminal state

A Case Study: TD-Gammon

- 15 white and 15 black pieces on a board of 24 locations, called points.

- Player rolls 2 dice and can move 2 pieces (or same piece twice)
Goal is to move pieces to last quadrant (for white that’s 19-14) and then off the board

A player can “hit” any opposing single piece placed on a point, causing that piece to be moved to the “bar”

Two pieces on a point block that point for the opponent

+ a number of other complications

Game complexity

- 30 pieces, 26 locations
- Large number of actions possible from a given state (up to 20)
- Very large number of possible states \(10^{20}\)
- Branching factor of about 400 (so difficult to apply heuristics)
- Stochastic environment (next state depends on the opponent’s move) but fully observable

TD-Gammon’s solution

- \(V_t(s)\) meant to estimate the probability of winning from any state \(s\)
- Rewards: 0 for all stages, except those on which the game is won
- Learning: non-linear form of TD(\(\lambda\))
 - like the Algorithm presented above, using a multilayer neural network to compute the gradients
State representation in TD-Gammon

- Representation involved little domain knowledge
- 198 input features:
 - For each point on the backgammon board, four units indicated the number of white pieces on the point (see (Tesauro, 1994) for a detailed description of the encoding used)
 - \((4 \text{ (white)} + 4 \text{ (black)}) \times 24 \text{ points} = 192 \text{ units}\)
 - 2 units encoded the number of white and black pieces on the bar
 - 2 units encoded the number of black and white pieces already successfully removed from the board
 - 2 units indicated in a binary fashion whether it was white’s or black’s turn to move.

TD-Gammon learning

- Given state (position) representation, the network computed its estimate in the way described in lecture 10.
– Output of hidden unit j given by a sigmoid function of the weighted sum of inputs i
\[
b(j) = \sigma(\sum_i w_{ij} f(i)) \tag{10}\]

– Computation from hidden to output units is analogous to this

- TD-Gammon employed TD(λ) where the eligibility trace updates (equation (9),
\[
\vec{e}_t = \gamma \lambda \vec{e}_{t-1} + \nabla_{\vec{\theta}_t} V_t(s_t)
\]
were computed by the back-propagation procedure

- TD-Gammon set $\gamma = 1$ and rewards to zero, except on winning, so TD error is usually $V_t(s_{t+1}) - V_t(s_t)$

TD-Gammon training

- Training data obtained by playing against itself
- Each game was treated as an episode
- Non-linear TD applied incrementally (i.e. after each move)
- Some results (according to (Sutton and Barto, 1998))

<table>
<thead>
<tr>
<th>Program</th>
<th>Hidden Units</th>
<th>Training Games</th>
<th>Opponents</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>TD-Gam 0.0</td>
<td>40</td>
<td>300,000</td>
<td>other programs</td>
<td>tied for best</td>
</tr>
<tr>
<td>TD-Gam 1.0</td>
<td>80</td>
<td>300,000</td>
<td>Robertie, Magriel, ...</td>
<td>-13 pts / 51 games</td>
</tr>
<tr>
<td>TD-Gam 2.0</td>
<td>40</td>
<td>800,000</td>
<td>various Grandmasters</td>
<td>-7 pts / 38 games</td>
</tr>
<tr>
<td>TD-Gam 2.1</td>
<td>80</td>
<td>1,500,000</td>
<td>Robertie</td>
<td>-1 pt / 40 games</td>
</tr>
<tr>
<td>TD-Gam 3.0</td>
<td>80</td>
<td>1,500,000</td>
<td>Kazaros</td>
<td>+6pts / 20 games</td>
</tr>
</tbody>
</table>

Notes based on (Sutton and Barto, 1998, ch 8, 9). Further details on TD-Gammon can be found in Tesauro’s papers (Tesauro, 1994). Other interesting case studies can be found in (Sutton and Barto, 1998, ch 10) and (Bertsekas and Tsitsiklis, 1996).

References

