Learning to control Markov Decision Processes

CS7032: AI & Agents for IET

November 19, 2014
Outline

- Reinforcement Learning problem as a Markov Decision Process (MDP)
- Rewards and returns
- Examples
- The Bellman Equations
- Optimal state- and action-value functions and Optimal Policies
- Computational considerations
The Abstract architecture revisited (yet again)

- Add the ability to evaluate feedback:

 ![Diagram of the Abstract architecture](image-url)

 - Agent
 - Perception (S)
 - Environment
 - Action (A)
The Abstract architecture revisited (yet again)

- Add the ability to evaluate feedback:

 ![Diagram of Agent, Perception, Reward, and Environment]

- How to represent goals?
The Abstract architecture revisited (yet again)

- Add the ability to evaluate feedback:

![Diagram]

- How to represent goals?
Interaction as a Markov decision process

- We start by simplifying *action* (as in purely reactive agents):
 - \(action : S \rightarrow A \) (*New notation: \(action \equiv \pi \))
 - \(env : S \times A \rightarrow S \) (New notation: \(env \equiv \delta \))

- At each discrete time agent observes state \(s_t \in S \) and chooses action \(a_t \in A \)
- Then receives immediate reward \(r_t \)
- And state changes to \(s_{t+1} \) (deterministic case)
Levels of abstraction

- Time steps need not be fixed real-time intervals.
- Actions can be low level (e.g., voltages to motors), or high level (e.g., accept a job offer), mental (e.g., shift in focus of attention), etc.
- States can be low-level sensations, or they can be abstract, symbolic, based on memory, or subjective (e.g., the state of being surprised or lost).
- An RL agent is not like a whole animal or robot.
 - The environment encompasses everything the agent cannot change arbitrarily.
- The environment is not necessarily unknown to the agent, only incompletely controllable.
Specifying goals through rewards

- The reward hypothesis [Sutton and Barto, 1998, see]:
 All of what we mean by goals and purposes can be well thought of as the maximization of the cumulative sum of a received scalar signal (reward).

- Is this correct?
Specifying goals through rewards

- The reward hypothesis [Sutton and Barto, 1998, see]:

 All of what we mean by **goals** and purposes can be well thought of as the maximization of the cumulative sum of a received scalar signal (**reward**).

- Is this **correct**?

- Probably not: but **simple**, surprisingly flexible and **easily disprovable**, so it makes scientific sense to explore it before trying anything more complex.
Some examples

- Learning to play a game (e.g. draughts):
 - +1 for winning,
 - −1 for losing, 0 for drawing
 - (similar to the approach presented previously.)
- Learning how to escape from a maze:
 - set the reward to zero until it escapes
 - and +1 when it does.
- Recycling robot:
 - +1 for each recyclable container collected,
 - −1 if container isn’t recyclable, 0 for wandering,
 - −1 for bumping into obstacles etc.
Some examples

- Learning to play a game (e.g. draughts):
 - +1 for winning, −1 for losing, 0 for drawing
 - (similar to the approach presented previously.)
Some examples

- Learning to play a game (e.g. draughts):
 - +1 for winning, -1 for losing, 0 for drawing
 - (similar to the approach presented previously.)
- Learning how to escape from a maze:
Some examples

- Learning to play a game (e.g. draughts):
 - +1 for winning, −1 for losing, 0 for drawing
 - (similar to the approach presented previously.)

- Learning how to escape from a maze:
 - set the reward to zero until it escapes
 - and +1 when it does.

- Recycling robot:
Some examples

- Learning to play a game (e.g. draughts):
 - +1 for winning, −1 for losing, 0 for drawing
 - (similar to the approach presented previously.)

- Learning **how to escape** from a maze:
 - set the reward to **zero** until it escapes
 - and +1 when it does.

- Recycling robot: +1 for each recyclable container collected, −1 if container isn’t recyclable, 0 for wandering, −1 for bumping into obstacles etc.
Important points about specifying a reward scheme

- the reward signal is the place to specify what the agent’s goals are (given that the agent’s high-level goal is always to maximise its rewards)
- the reward signal is not the place to specify how to achieve such goals
- Where are rewards computed in our agent/environment diagram?
- Rewards and goals are outside the agent’s direct control, so they it makes sense to assume they are computed by the environment!
From rewards to returns

▶ We define (expected) returns \((R_t)\) to formalise the notion of rewards received in the long run.

▶ The simplest case:

\[
R_t = r_{t+1} + r_{t+2} + \cdots + r_T
\]

(1)

where \(r_{t+1}, \ldots\) is the sequence of rewards received after time \(t\), and \(T\) is the final time step.

▶ What sort of agent/environment is this definition most appropriate for?
From rewards to returns

- We define (expected) returns (R_t) to formalise the notion of rewards received in the long run.

- The simplest case:

$$R_t = r_{t+1} + r_{t+2} + \cdots + r_T$$

(1)

where r_{t+1}, \ldots is the sequence of rewards received after time t, and T is the final time step.

- What sort of agent/environment is this definition most appropriate for?

- Answer: episodic interactions (which break naturally into subsequences; e.g. a game of chess, trips through a maze, etc).
Non-episodic tasks

- Returns should be defined differently for continuing (aka non-episodic) tasks (i.e. $T = \infty$).
- In such cases, the idea of discounting comes in handy:

$$R_t = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \cdots = \sum_{k=0}^{\infty} \gamma^k r_{t+k+1}$$ (2)

where $0 \leq \gamma \leq 1$ is the discount rate

- Is this sum well defined?
- One can thus specify far-sighted or myopic agents by varying the discount rate γ.
The pole-balancing example

Task: keep the pole balanced (beyond a critical angle) as long as possible, without hitting the ends of the track [Michie and Chambers, 1968]

- Modelled as an episodic task:
 - reward of $+1$ for each step before failure $\Rightarrow R_t = \text{number of steps before failure}$

- Can alternatively be modelled as a continuing task:
 - “reward” of -1 for failure and 0 for other steps $\Rightarrow R_t = -\gamma^k$ for k steps before failure
Episodic and continuing tasks as MDPs

- Extra formal requirements for describing episodic and continuing tasks:
 - need to distinguish episodes as well as time steps when referring to states: \(s_{t,i} \) for time step \(t \) of episode \(i \) (we often omit the episode index, though)
 - need to be able to represent interaction dynamics so that \(R_t \) can be defined as sums over finite or infinite numbers of terms [equations (1) and (2)]

\[r_1 = +1 \]
\[s_0 \]
\[s_1 \]
\[r_2 = +1 \]
\[s_2 \]
\[r_3 = +1 \]
\[r_4 = 0 \]
\[r_5 = 0 \]
Episodic and continuing tasks as MDPs

- Extra formal requirements for describing episodic and continuing tasks:
 - need to distinguish episodes as well as time steps when referring to states: \(s_{t,i} \) for time step \(t \) of episode \(i \) (we often omit the episode index, though)
 - need to be able to represent interaction dynamics so that \(R_t \) can be defined as sums over finite or infinite numbers of terms [equations (1) and (2)]

- Solution: represent termination as an absorbing state:

\[
\begin{align*}
s_0 & \quad r_1 = +1 \\
s_1 & \quad r_2 = +1 \\
s_2 & \quad r_3 = +1 \\
& \quad r_4 = 0 \\
& \quad r_5 = 0 \\
& \quad \vdots
\end{align*}
\]

- and making \(R_t = \sum_{k=0}^{T-t-1} \gamma^k r_{t+k+1} \) (where we could have \(T = \infty \) or \(\gamma = 1 \), but not both)
We assume that a reinforcement learning task has the Markov Property:

\[P(s_{t+1} = s', r_{t+1} = r|s_t, a_t, r_t, \ldots r_1, s_0, a_0) = P(s_{t+1} = s', r_{t+1} = r|s_t, a_t) \]

(3)

for all states, rewards and histories.

So, to specify a RL task as an MDP we need:
- to specify \(S \) and \(A \)
- and \(\forall s, s' \in S, a \in A: \)
 - transition probabilities:
 \[P_{ss'}^a = P(s_{t+1} = s'|s_t = s, a_t = a) \]
 - and rewards \(R_{ss'}^a \), Where a reward could be specified as an average over transitions from \(s \) to \(s' \) when the agent performs action \(a \)
 \[R_{ss'}^a = E\{r_{t+1}|s_t = s, a_t = a, s_{t+1} = s'\} \]
The recycling robot revisited

- At each step, robot has to decide whether it should (1) actively search for a can, (2) wait for someone to bring it a can, or (3) go to home base and recharge.
- Searching is better but runs down the battery; if it runs out of power while searching, has to be rescued (which is bad).
- Decisions made on basis of current energy level: high, low.
- Rewards = number of cans collected (or -3 if robot needs to be rescued for a battery recharge and 0 while recharging)
As a state-transition graph

- \(S = \{ \text{high}, \text{low} \} \), \(A = \{ \text{search}, \text{wait}, \text{recharge} \} \)
- \(R^{\text{search}} = \) expected no. of cans collected while searching
- \(R^{\text{wait}} = \) expected no. of cans collected while waiting
 \((R^{\text{search}} > R^{\text{wait}}) \)
Value functions

- RL is (almost always) based on estimating value functions for states, i.e. how much return an agent can expect to obtain from a given state.

- We can define the state-value function under policy \(\pi \) as the expected return when starting in \(s \) and following \(\pi \) thereafter:

\[
V^\pi(s) = E_\pi \{ R_t | s_t = s \} \quad (4)
\]

- Note that this implies averaging over probabilities of reaching future states, that is, \(P(s_{t+1} = s' | s_t = s, a_t = a) \) over all \(t \).

- We can also generalise the action function (policy) to \(\pi(s, a) \), returning the probability of taking action \(a \) while in state \(s \), which implies also averaging over actions.
The action-value function

we can also define an action-value function to give the value of taking action a in state s under a policy π:

$$Q^\pi(s, a) = E_{\pi}\{R_t | s_t = s, a_t = a\}$$ (5)

where $R_t = \sum_{k=0}^{\infty} \gamma^k r_{t+k+1}$.

Both v^π and Q^π can be estimated, for instance, through simulation (Monte Carlo methods):

- for each state s visited by following π, keep an average \hat{V}^π of returns received from that point on.
- \hat{V}^π approaches V^π as the number of times s is visited approaches ∞
- Q^π can be estimated similarly.
The Bellman equation

- Value functions satisfy particular recursive relationships.
- For any policy \(\pi \) and any state \(s \), the following consistency condition holds:

\[
V^\pi(s) = E_\pi\{R_t | s_t = s\}
\]
The Bellman equation

- Value functions satisfy particular recursive relationships.
- For any policy \(\pi \) and any state \(s \), the following consistency condition holds:

\[
V^\pi(s) = E_\pi \{ R_t | s_t = s \} \\
= E_\pi \left\{ \sum_{k=0}^{\infty} \gamma^k r_{t+k+1} | s_t = s \right\}
\]
The Bellman equation

- Value functions satisfy particular recursive relationships.
- For any policy π and any state s, the following consistency condition holds:

$$V^\pi(s) = E_\pi \{ R_t | s_t = s \}$$

$$= E_\pi \{ \sum_{k=0}^{\infty} \gamma^k r_{t+k+1} | s_t = s \}$$

$$= E_\pi \{ r_{t+1} + \gamma \sum_{k=0}^{\infty} \gamma^k r_{t+k+2} | s_t = s \}$$

(6)
The Bellman equation

▶ Value functions satisfy particular recursive relationships.
▶ For any policy π and any state s, the following consistency condition holds:

$$
V^\pi(s) = E_\pi \{ R_t | s_t = s \} \\
= E_\pi \{ \sum_{k=0}^{\infty} \gamma^k r_{t+k+1} | s_t = s \} \\
= E_\pi \{ r_{t+1} + \gamma \sum_{k=0}^{\infty} \gamma^k r_{t+k+2} | s_t = s \} \\
= \sum_a \pi(s, a) \sum_{s'} P_{ss'}^a [R_{ss'}^a + \gamma E_\pi \{ \sum_{k=0}^{\infty} \gamma^k r_{t+k+2} | s_{t+1} = s' \}] \\
(6)
$$
The Bellman equation

- Value functions satisfy particular recursive relationships.
- For any policy \(\pi \) and any state \(s \), the following consistency condition holds:

\[
V^\pi(s) = E_\pi \{ R_t \mid s_t = s \} = E_\pi \{ \sum_{k=0}^{\infty} \gamma^k r_{t+k+1} \mid s_t = s \} = E_\pi \{ r_{t+1} + \gamma \sum_{k=0}^{\infty} \gamma^k r_{t+k+2} \mid s_t = s \} = \sum_a \pi(s, a) \sum_{s'} P_{ss'}^a [R_{ss'}^a + \gamma E_\pi \{ \sum_{k=0}^{\infty} \gamma^k r_{t+k+2} \mid s_{t+1} = s' \}] = \sum_a \pi(s, a) \sum_{s'} P_{ss'}^a [R_{ss'}^a + \gamma V^\pi(s')] \tag{6}
\]
The Bellman equation for V^π (6) expresses a relationship between the value of a state and the value of its successors. This can be depicted through backup diagrams, representing transfers of value information back to a state (or a state-action pair) from its successor states (or state-action pairs).
Backup diagrams

- The Bellman equation for V^π (6) expresses a relationship between the value of a state and the value of its successors.
- This can be depicted through backup diagrams

representing transfers of value information back to a state (or a state-action pair) from its successor states (or state-action pairs).
Backup diagrams

- The Bellman equation for V^π (6) expresses a relationship between the value of a state and the value of its successors.
- This can be depicted through backup diagrams

representing transfers of value information back to a state (or a state-action pair) from its successor states (or state-action pairs).
An illustration: The GridWorld

- Deterministic actions (i.e. $P_{ss'}^a = 1$ for all s, s', a);
- Rewards: $R^a = -1$ if a would move agent off the grid, otherwise $R^a = 0$, except for actions from states A and B.

Diagram (b) shows the solution of the set of equations (6), for equiprobable (i.e. $\pi(s, \uparrow) = \pi(s, \downarrow) = \pi(s, \leftarrow) = \pi(s, \rightarrow) = .25$, for all s) random policy and $\gamma = 0.9$.
Optimal Value functions

- For finite MDPs, policies can be partially ordered:
 \[\pi \geq \pi' \text{ iff } V_\pi(s) \geq V_{\pi'}(s), \quad \forall s \in S \]
- There are always one or more policies that are better than or equal to all the others. These are the optimal policies, denoted \(\pi^* \).
- The Optimal policies share the same
 - optimal state-value function:
 \[V^*(s) = \max_{\pi} V_\pi(s), \quad \forall s \in S \]
 and
 - optimal action-value function:
 \[Q^*(s, a) = \max_{\pi} Q_\pi(s, a), \quad \forall s \in S \text{ and } a \in A \]
Bellman optimality equation for V^*

- The value of a state under an optimal policy must equal the expected return for the best action from that state:

$$V^*(s) = \max_{a \in A(s)} Q^*(s, a)$$

$$= \max_a E_{\pi^*} \{ R_t | s_t = s, a_t = a \}$$

$$= \max_a E_{\pi^*} \left\{ r_{t+1} + \gamma \sum_{k=0}^{\infty} \gamma^k r_{t+k+2} | s_t = s, a_t = a \right\}$$

$$= \max_a E_{\pi^*} \left\{ r_{t+1} + \gamma V^* (s_{t+1}) | s_t = s, a_t = a \right\} \quad (7)$$

$$= \max_{a \in A(s)} \sum_{s'} P_{ss'}^a [R_{ss'}^a + \gamma V^* (s')] \quad (8)$$
Bellman optimality equation for Q^*

- Analogously to V^*, we have:

\[
Q^*(s, a) = E\left\{r_{t+1} + \gamma \max_{a'} Q^*(s_{t+1}, a') \mid s_t = s, a_t = a\right\} \tag{9}
\]

\[
= \sum_{s'} P_{ss'}^a [R_{ss'}^a + \gamma \max_{a'} Q^*(s', a')] \tag{10}
\]

- V^* and Q^* are the unique solutions of these systems of equations.
From optimal value functions to policies

- Any policy that is greedy with respect to V^* is an optimal policy.
- Therefore, a one-step-ahead search yields the long-term optimal actions.
- Given Q^*, all the agent needs to do is set $\pi^*(s) = \arg\max_a Q^*(s, a)$.

![Diagram of gridworld, \(V^* \), and \(\pi^* \)]
Knowledge and Computational requirements

- Finding an optimal policy by solving the Bellman Optimality Equation requires:
 - accurate knowledge of environment dynamics,
 - the Markov Property.

- Tractability:
 - polynomial in number of states (via dynamic programming)...
 - ...but number of states is often very large (e.g., backgammon has about 10^{20} states).
 - So approximation algorithms have a role to play

- Many RL methods can be understood as approximately solving the Bellman Optimality Equation.
These notes are based on [Sutton and Barto, 1998]. For a comprehensive formal treatment of MDPs and RL (under the name of “Neuro-dynamic programming” see [Bertsekas and Tsitsiklis, 1996].

