Exploration-Exploitation tradeoffs and multi-armed bandit problems

CS7032: AI & Agents for IET

October 28, 2014

Learning and Feedback

• Consider the *ACO algorithm*: how does the system learn?

• *Contrast* that form of “learning” with, say, our system that learns to play *draughts*, or to a system that learns to filter out *spam mail*.

• The RL literature often contrasts *instruction* and *evaluation*.

• *Evaluation* is a key component of Reinforcement learning systems:
 – Evaluative feedback is *local* (it indicates how good an action is) but not whether it is the best action possible
 – This creates a need for *exploration*

Associative vs. non-associative settings

• In general, learning is both
 – *selectional*: i.e. actions are selected by trying different alternatives and comparing their effects,
 – *associative*: i.e. the actions selected are associated to particular situations.

• However, in order to study evaluative feedback in detail it is convenient to *simplify things* and consider the problem from a *non-associative* perspective.

Learning from fruit machines

• The *n-armed bandit setting*:

 ![Image of fruit machines](image.png)

• Choice of *n* actions (which yield numerical rewards drawn from a stationary probability distribution)
– each action selection called a play

• Goal: maximise expected (long term) total reward or return.

• Strategy: concentrate plays on the best levers.

How to find the best plays

• Let’s distinguish between:
 – reward, the immediate outcome of a play, and
 – value, the expected (mean) reward of a play

• But how do we estimate values?

• We could keep a record of rewards r^a_1, \ldots, r^a_k for each chosen action a and estimate the value of choosing a at time t as

\[
Q_t(a) = \frac{r^a_1 + r^a_2 + \cdots + r^a_k}{k}
\]

But how do we choose an action?

• We could be greedy and exploit our knowledge of $Q_t(a)$ to choose at any time t the play with the highest estimated value.

• But this strategy will tend to neglect the estimates of non-greedy actions (which might have produced greater total reward in the long run).

• One could, alternatively, explore the space of actions by choosing, from time to time, a non-greedy action.

Balancing exploitation and exploration

• The goal is to approximate the true value, $Q(a)$ for each action

• $Q_t(a)$, given by equation [1] will converge to $Q(a)$ as $k_a \to \infty$ (Law of Large Numbers)

• So balancing exploration and exploitation is necessary...

• but finding the right balance can be tricky; many approaches rely on strong assumptions about the underlying distributions

• We will present a simpler alternative...

A simple strategy

• The simplest strategy: choose action a^* so that:

\[
a^* = \arg \max_a Q_t(a) \quad \text{(greedy selection)}
\]

• A better simple strategy: ϵ-greedy methods:
With probability $1 - \epsilon$, exploit; i.e. choose a^* according with (2).

The rest of the time (probability ϵ) choose an action at random, uniformly.

A suitably small ϵ guarantees that all actions get explored sooner or later (and the probability of selecting the optimal action converges to greater than $1 - \epsilon$).

Exploring exploration at different rates

- The “10-armed testbed” (Sutton and Barto, 1998):

 - 2000 randomly generated n-armed bandit tasks with $n = 10$.
 - For each action, a, expected rewards $Q(a)$ (the “true” expected values of choosing a) are selected from a normal (Gaussian) probability distribution $N(0, 1)$.
 - Immediate rewards r_a^1, \ldots, r_a^k are similarly selected from $N(Q(a), 1)$.

```r
nArmedBanditTask <- function(n=10, s=2000)
{
  qtrue <- rnorm(n)
  r <- matrix(nrow=s,ncol=n)
  for (i in 1:n){
    r [, i] <- rnorm(s,mean=qtrue[i])
  }
  return(r)
}
```

Some empirical results

- Averaged results of 2000 rounds of 1000 plays each:

![Graph of average reward over plays for different ϵ values](image1)

![Graph of optimal action percentage over plays for different ϵ values](image2)
Softmax methods

- **Softmax action selection** methods grade action probabilities by estimated values.

- Commonly use **Gibbs, or Boltzmann, distribution**. I.e. choose action \(a \) on the \(t \)-th play with probability

\[
\pi(a) = \frac{e^{Q_t(a)}/\tau}{\sum_{b \in A} e^{Q_t(b)}/\tau}
\]

where \(\tau \) is a positive parameter called the *temperature*, as in simulated annealing algorithms.

High temperatures cause the actions to be nearly equiprobable. Low temperatures cause a greater difference in selection probability for actions that differ in their value estimates. Softmax action selection becomes the same as greedy action selection as \(\tau \to 0 \).

Keeping track of the means

- Maintaining a record of means by recalculating them after each play can be a source of inefficiency in evaluating feedback. E.g.:

```r
## inefficient way of selecting actions
selectAction <- function(r, e=0) {
  n <- dim(r)[2] # number of arms (cols in r)
  if (sample(c(T,F),1,prob=c(e,1-e))) {
    return(sample(1:n,1)) # explore if e > 0 and chance allows
  } else {
    # all Qt(a_i), i in [1,n]
    Qt <- sapply(1:n, function(i) mean(r[,i], na.rm=T))
    ties <- which(Qt == max(Qt))
    if (length(ties) > 1)
      return(sample(ties, 1))
    else
      return( ties )
  }
}
```

Incremental update

- Do we really need to store all rewards? NO

- Let \(Q_k \) be the mean of the first \(k \) rewards for an action,

- We can express the next mean value as

\[
Q_{k+1} = \frac{1}{k+1} \sum_{i=1}^{k+1} r_i = \ldots = Q_k + \frac{1}{k+1}[r_{k+1} - Q_k]
\]
• Equation (4) is part of family of formulae in which the new estimate (Q_{k+1}) is the old estimate (Q_k) adjusted by the estimation error $(r_{k+1} - Q_k)$ scaled by a step parameter ($\frac{1}{k+1}$, in this case).

• (Recall the LMS weight update step described in the introduction to machine learning).

The complete derivation of (4) is:

$$Q_{k+1} = \frac{1}{k+1} \sum_{i=1}^{k+1} r_i$$

$$= \frac{r_{k+1} + \sum_{i=1}^{k} r_i}{k+1}$$

$$= \frac{r_{k+1} + kQ_k}{k+1}$$

$$= \frac{r_{k+1} + kQ_k + Q_k - Q_k}{k+1}$$

$$= \frac{r_{k+1} - Q_k}{k+1} + \frac{Q_k(k+1)}{k+1}$$

$$= Q_k + \frac{1}{k+1} [r_{k+1} - Q_k]$$

Non-stationary problems

• What happens if the “n-armed bandit” changes over time? How do we keep track of a changing mean?

• An approach: weight recent rewards more heavily than past ones.

• So, our update formula (4) could be modified to

$$Q_{k+1} = Q_k + \alpha [r_{k+1} - Q_k]$$

(5)

where $0 < \alpha \leq 1$ is a constant

• This gives us Q_k as an exponential, recency-weighted average of past rewards and the initial estimate

Recency weighted estimates

• Given (5), Q_k can be rewritten as:

$$Q_k = Q_{k-1} + \alpha [r_k - Q_{k-1}]$$

$$= \alpha r_k + (1-\alpha)Q_{k-1}$$

$$= \ldots$$

$$= (1-\alpha)^k Q_0 + \sum_{i=1}^{k} \alpha (1-\alpha)^{k-i} r_i$$

(6)

• Note that $(1-\alpha)^k + \sum_{i=1}^{k} \alpha (1-\alpha)^{k-i} = 1$. i.e. weights sum to 1.

• The weight $\alpha (1-\alpha)^{k-i}$ decreases exponentially with the number of intervening rewards
Picking initial values

- The above methods are biased by Q_0
 - For sample-average, bias disappears once all actions have been selected
 - For recency-weighted methods, bias is permanent (but decreases over time)
- One can supply prior knowledge by picking the right values for Q_0
- One can also choose optimistic initial values to encourage exploration (Why?)

The effects of optimism

- With Q_0’s set initially high (for each action)q, the learner will be disappointed by actual rewards, and sample all actions many times before converging.
- E.g.: Performance of Optimistic ($Q_0 = 5, \forall a$) vs Realistic ($Q_0 = 0, \forall a$) strategies for the 10-armed testbed

![Graph comparing optimistic and realistic strategies](image)

Evaluation vs Instruction

- RL searches the action space while SL searches the parameter space.
- Binary, 2-armed bandits:
 - two actions: a_1 and a_2
 - two rewards: success and failure (as opposed to numeric rewards).
- SL: select the action that returns success most often.
- Stochastic case (a problem for SL?):
Two stochastic SL schemes (learning automata)

- **L_{r-p}**, Linear reward-penalty: choose the action as in the naive SL case, and keep track of the successes by updating an estimate of the probability of choosing it in future.

- Choose $a \in A$ with probability $\pi_t(a)$

- Update the probability of the chosen action as follows:

 $$
 \pi_{t+1}(a) = \begin{cases}
 \pi_t(a) + \alpha(1 - \pi_t(a)) & \text{if success} \\
 \pi_t(a)(1 - \alpha) & \text{otherwise}
 \end{cases} \quad (7)
 $$

- All remaining actions $a_i \neq a$ are adjusted proportionally:

 $$
 \pi_{t+1}(a_i) = \begin{cases}
 \pi_t(a_i)(1 - \alpha) & \text{if } a \text{ succeeds} \\
 \frac{\alpha}{|A|-1} + \pi_t(a_i)(1 - \alpha) & \text{otherwise}
 \end{cases} \quad (8)
 $$

- **L_{r-i}**, Linear reward-inaction: like L_{r-p} but update probabilities only in case of success.

Performance: instruction vs evaluation
• See Narendra and Thathachar, 1974, for a survey of learning automata methods and results.

Reinforcement comparison

• Instead of estimates of values for each action, keep an estimate of overall reward level \bar{r}_t:
 \[\bar{r}_{t+1} = \bar{r}_t + \alpha[r_{t+1} - \bar{r}_t] \tag{9} \]
 and action preferences $p_t(a)$ w.r.t. reward estimates:
 \[p_{t+1}(a) = p_t(a) + \beta[r_{t+1} - \bar{r}_t] \tag{10} \]
• The softmax function can then be used as a PMF for action selection:
 \[\pi_t(a) = \frac{e^{\rho_t(a)}}{\sum_{b \in A} e^{\rho_t(b)}} \tag{11} \]
 (0 \leq α \leq 1 and β $>$ 0 are step-size parameters.)

How does reinforcement comparison compare?

• Reinforcement comparison ($\alpha = 0.1$) vs action-value on the 10-armed testbed.

Pursuit methods

• maintain both action-value estimates and action preferences,
• preferences continually "pursue" greedy actions.
• E.g.: for greedy action $a^* = \arg \max_a Q_{t+1}(a)$, increase its selection probability:
 \[\pi_{t+1}(a^*) = \pi_t(a^*) + \beta[1 - \pi_t(a^*)] \tag{12} \]
 while decreasing probabilities for all remaining actions $a \neq a^*$
 \[\pi_{t+1}(a) = \pi_t(a) + \beta[0 - \pi_t(a)] \tag{13} \]
Performance of pursuit methods

![Graph showing performance comparison between pursuit and reinforcement methods](image)

- Pursuit ($\alpha = 1/k$ for Q_t update, $\pi_0(a) = 1/n$ and $\beta = 0.01$) versus reinforcement comparison ($\alpha = 0.1$) vs action-value on the 10-armed testbed.

Further topics

- Associative search:
 - Suppose we have many different bandit tasks and the learner is presented with a different one at each play.
 - Suppose each time the learner is given a clue as to the which task it is facing...
 - In such cases, the best strategy is a combination of search for the best actions and association of actions to situations.

- Exact algorithms for computation of Bayes optimal way to balance exploration and exploitation exist (Bellman, 1956), but are intractable.

References

