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A.W. Faber Model 366 - System Schumacher
A Very Unusual Slide Rule

Dieter von Jezierski with Detlef Zerfowski and Paul Weinmann

1. The Schumacher Slide Rule and Its Inventor

Introduction
The Schumacher slide rule has unusual scale divisions and
configuration. This is because the slide rule is not based
on logarithms but instead is based on a totally different
mathematical concept.
Some History
This slide rule was the invention of Dr. Johannes Schu-
macher (1858-1930). When he invented this slide rule, he
was professor at the School for the Royal Bavarian Cadet
Corps in Munich.

Figure 1. Dr. Johannes Schumacher.

Dr. Schumacher is shown in the above picture that
appeared in the 1956 Festschrift titled Das königliche
Bayerische Kadettenkorps, ein Rückblick auf die einstige
Erziehungsstätte 200 Jahre nach ihrer Gründung (The
Royal Bavarian Cadet Corps - a look back at the for-
mer educational site 200 years after its founding). The
picture’s caption reads “Assistant Headmaster, Major d.
R. a. D. Dr. Johannes Schumacher, Cadet Corps 1897-

1920. Greatly honored for his teaching and, beyond that,
especially esteemed during 1918-1920.” It appears from
this caption that, during these very difficult early post-
war years, Schumacher personally attended to the welfare
of former students in distress.

The Schumacher slide rule was manufactured by A.W.
Faber. Faber acquired DRGM 344576 for this “slide
rule with divisions at equal intervals and indices based
on number theory”. A corresponding circular slide rule
(which was never made) was also covered by DRGM
344576. The linear version was offered (as Model 366)
from 1909 through 1929.

The origins of the Schumacher-Faber collaboration are
not known to us. However, some speculation about this
connection seems appropriate here. In 1909 the head
of A.W. Faber was Count Alexander von Faber-Castell
(1866-1928). In accordance with tradition and his station
as third in line for succession in the Castell-Rüdenhausen
family, he received his education in the military. Dur-
ing the period 1878-1885 he was a member of the Cadet
Corps in Munich. In 1898 he married the sole Faber heir,
Baroness Ottilie von Faber, and took charge of the firm.
Although Dr. Johannes Schumacher began to teach at
the Cadet Academy in 1897 (too late to be one of Count
Alexander’s instructors), perhaps Schumacher met Count
Alexander at one of the Academy’s annual reunions and
took the opportunity to interest the Count in his inven-
tion.
Construction
The first version of the Schumacher slide rule was de-
signed and produced in a limited series intended for the
inventor to use during instruction. The design already in-
corporated the features of DRP 206428 (1907), i.e. “metal
bands inserted in the edges of the stator and slide”. This
slide rule also incorporated (but did not mention) DRGM
296340 (1908), i.e., “wooden pegs to secure the celluloid
outer layer”. Thus this slide rule was a very high-quality
product for its time.

Figure 2. 1909 Schumacher slide rule. (From the collection of D. v J.)
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The slide rule was first made of boxwood and later of
pearwood. The four 250 mm-long non-logarithmic scales
are printed on celluloid strips attached to the slide rule
with glue and wooden pins. The floor of the stator is split
and contains springs. There is a centimeter scale on the
upper slanted edge, as well as an inch scale on the lower
slanted edge. The cursor is framed in aluminum and has
two windows. The left window has a hairline on glass;
the right window has a “read-off” table. The slide rule is
280 mm long, 35 mm wide, and 10 mm thick.
Description of the Scales
There are two pairs of scales, both arranged along the
slide-stator interfaces. The scales are very precisely em-
bossed in black.

Figure 3. Structural details. (From the 1909 instruction
manual by Dr. Schumacher)

Figure 4. The planned circular version of the Schumacher
slide rule (Never manufactured.)

The two scales in the upper pair are identical and are
designated N1/N2 (Numerus 1/Numerus 2). The mark-
ings are equally spaced and are numbered as follows: 1
2 4 8 16 32 64 27 54 7 14 28 56 . . . 15 30 60 19 38 76
51. The two scales in the lower pair are identical and
are designated I1/I2 (Index 1/Index 2). The markings

are equally spaced and are numbered 0 through 100. As
will be shown later in this article, the upper pair of scales
correspond in a limited way to the usual slide rule in the
sense that these scales are used for multiplication and
division of whole numbers.
The Index Table
The index table (which appears in Figure 2 to the right
of the cursor window) can be viewed as a separate and
distinct part of the slide rule. The table’s use will be ex-
plained later. Schumacher had originally envisioned the
table at the left end of the slide rule itself. (See Fig-
ure 3.) However, it would have been technically diffi-
cult to produce such an unusual configuration. (It would
have required making and processing a blank that was
beyond the capabilities of Faber’s production line at that
time.) Therefore the index table was printed on a custom-
designed cursor. In the case of the circular version of the
slide rule (discussed below) the index table is very advan-
tageously located in the center of the rings of scales.
The Proposed Circular Slide Rule
As already mentioned, patent protection exists (in the
form of DRGM 344576) for a circular version of the Schu-
macher slide rule. It even appears that Dr. Schumacher
would have preferred this form of the slide rule, since
it would have been easier to understand and to handle.
However, at that time, Faber did not have the capacity to
produce circular slide rules. In Schumacher’s instruction
manual [1] his planned circular slide rule was depicted in
a drawing, and its application was discussed only briefly.

2. The Mathematical Foundations
of System Schumacher

Calculating with real numbers and within prime
fields
If one wants to understand the theory of Johannes Schu-
macher’s slide rule, it is necessary to make a short journey
into discrete mathematics. For this reason we compare
how to calculate with real numbers (using slide rules)
and how to calculate using modulo arithmetic, or more
correctly within prime fields.

First we take a look at calculating with real numbers.
Each real number can be regarded as a single point on a
number line. (See Figure 5.)

Figure 5. Calculating 2.1+4.47 = 6.57 on a number line.

The sum of two real numbers is always a real number
(e.g., 2.1 + 4.47 = 6.57). The same is valid for subtrac-
tion, multiplication, division, exponentiation, and root
extraction. All results are real numbers. The only excep-
tions to this rule are exponentiation and root extraction
of real numbers less than 0, which may lead to imaginary
numbers, which will not be considered here.

An infinite number of real numbers exist, which seems
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to be necessary for completeness of these operations. But
for finite sets of numbers similar mathematical operations
can be defined, too. Schumacher’s slide rule uses this kind
of operations. Examples for corresponding finite sets of
numbers are so-called prime fields, a concept introduced
below.

Throughout the following sections p represents an ar-
bitrary prime number. A prime number p is an integer
greater than 1, which only can be divided by 1 and p it-
self without remainder. Examples of prime numbers are
2 (the only even prime), 3, 5, 7, 11,...., 101, ....

The prime field of prime number p consists of all in-
tegers 0 to p− 1, together with specifically defined math-
ematical operations.

Consider the prime field with p = 11. This prime field
uses the numbers 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10. In
the following subsections the corresponding mathematical
operations will be defined.
Addition in prime fields
Because any sum of two numbers of the given set should
lie in the same set of numbers, the following rule is de-
fined. Any two numbers a and b are added as follows.
Calculate the sum a + b as usual. Then divide this sum
by the prime p and take the remainder. By taking this
remainder c as the final result of the addition, it is guar-
anteed that this result c is an integer lying within 0 to
p-1.

We will write this operation as a + b ≡ c mod 11.
(The spoken version of this is: a plus b is congruent c
modulo 11).

For example: Let p = 11, a = 7, b = 9. It follows that
a + b = 16. Now dividing 16 by 11 leads to 16/11 = 1
remainder 5. So the final result (c) is 5. In mathematical
notation we write 7 + 9 ≡ 5 mod 11.

Note that when using this rule for addition the two
numbers, a and a + p cannot be distinguished any more.
This is because dividing both numbers by p leads to the
same remainder.
Subtraction in prime fields
A number b is subtracted from the number a as follows:
Calculate a − b as usual. If the result is less than 0, add
multiples of p until the result is greater or equal to 0.
Then determine the remainder of the division by p. This
remainder is the final result.

For example: Let p = 11, a = 7, and b = 9. It holds
a − b = −2. Then calculate −2 + 11 = 9. Dividing the
result by 11 and keeping the remainder leads to 9/11 = 0
remainder 9. Therefore the final result is 9. In mathemat-
ical notation we write 7 − 9 ≡ 9 mod 11.

For a more intuitive understanding see the graphical
representation of the operations defined above (Fig. 6).
We write the numbers 0, ..., p−1 on a number-ring (similar
to a clock with p hours). Addition (or subtraction) can
be illustrated by going clockwise (or counter-clockwise)
the corresponding number of units around the ring.

Figure 6. Addition 7 + 9 ≡ 5 mod 11 (left) and subtrac-
tion 7−9 ≡ 9 mod 11 (right) illustrated on number-rings.

Multiplication in prime fields
Any two numbers a and b are multiplied as follows. Cal-
culate a ∗ b as usual. Then divide this intermediate result
by the prime p and take the remainder c as the final result.

For example: Let p = 11, a = 7, b = 9. It holds that
a ∗ b = 63. Now dividing 63 by 11 leads to 63/11 = 5
remainder 8. So the final result is 8. In mathematical no-
tation 7 ∗ 9 ≡ 8 mod 11.
Division in prime fields
Dividing in prime fields is a bit more difficult to under-
stand. One reason is that the set of numbers 0, ..., p − 1
does not contain any fraction comparable to fractions
within the set of real numbers. Therefore we first have
to take a detailed look at the division in the set of real
numbers.

If we want to divide a real number a by a real number
b (i.e. a/b), this operation can be rewritten in a different
form. Instead of directly calculating a/b, it is also possi-
ble to calculate the multiplication a∗b′ when the equation
b ∗ b′ = 1 holds.

Perhaps you will say, “This is banal. Let a = 3 and
b = 4. There is no difference in calculating a/b = 3/4 =
0.75 or a ∗ b′ = 3 ∗ 0.25 = 0.75 (note b ∗ b′ = 4 ∗ 0.25 = 1).
The result is the same.” Yes, this is true for real num-
bers. But this is not true in prime fields! Because in
prime fields no fraction exists, one first has to determine
a proper b′. Then multiplication in the prime field with b′

is performed. This procedure assures that the final result
is always within the set of numbers 0 to p − 1.1

For example: Let p = 11, a = 7, and b = 9. Accord-
ing to the division rule, first determine b′. For b = 9
it holds that b′ = 5 because b ∗ b′ = 9 ∗ 5 = 45 ≡ 1
mod 11. Getting the result for the division a/b we calcu-
late a ∗ b′ = 7 ∗ 5 = 35 ≡ 2 mod 11. So the final result of
a/b modulo 11 is 2.

You may ask, “Why do we need all these mathemat-
ical rules in an article about Schumacher’s slide rule?”
The answer is in the next subsection, where we intro-
duce a special kind of logarithms used in prime fields.
These logarithms are the bases of the operations of Schu-
macher’s slide rule.

1There are efficient algorithms for determining b′ for any number. We will not go into detail about these algorithms because they are
not important to the understanding of how Schumacher’s slide rule works.
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Primitive roots in prime fields
Consider any arbitrary real number a greater than 0 and
a given base, e.g. 3. The number a can be uniquely repre-
sented by an exponent x such that a = 3x. The exponent
x is called the logarithm of the number a for the base
3. For real numbers this relationship holds for every base
that is a real and positive number.

However, in prime fields one cannot use an arbitrary
number as a base; one can only use so called “primitive
roots”. A number w is a primitive root of a given prime
field if any number in the range 1 to p − 1 of this prime
field can be generated by multiplying w multiple times
by itself. This means that any number a (unequal to 0)
of the prime field can be written in the form wi. The
exponent i is called the index or “discrete logarithm” of
the number a.
Example for p = 11: A primitive root of p = 11 is w = 2,
since

w0 = 20 = 1 ≡ 1 mod 11
w1 = 21 = 2 ≡ 2 mod 11
w2 = 22 = 4 ≡ 4 mod 11
w3 = 23 = 8 ≡ 8 mod 11
w4 = 24 = 16 ≡ 5 mod 11
w5 = 25 = 32 ≡ 10 mod 11
w6 = 26 = 64 ≡ 9 mod 11
w7 = 27 = 128 ≡ 7 mod 11
w8 = 28 = 256 ≡ 3 mod 11
w9 = 29 = 512 ≡ 6 mod 11

Note that all numbers 1 to 10 occur as a result on
the right side. Additionally see that performing fur-
ther multiplication by w = 2 all results repeat in an
eternal cycle (e.g. w10 = 210 = 1024 ≡ 1 mod 11 and
w11 = 211 = 2048 ≡ 2 mod 11 and so on).

As already mentioned, there is a little pitfall. In con-
trast to real numbers, one may not use any arbitrary num-
ber as a base. For example, 4 is not a primitive root for
p = 11, since

40 = 1 ≡ 1 mod 11
41 = 4 ≡ 4 mod 11
42 = 16 ≡ 5 mod 11
43 = 64 ≡ 9 mod 11
44 = 256 ≡ 3 mod 11
45 = 1024 ≡ 1 mod 11 (i.e., 45 ≡ 40 mod 11)

and cyclic repetitions from then on. Because certain num-
bers, for example the number 7, cannot be expressed in
the form 4i, the number 4 is not a primitive root.

Now let us go back to the example w = 2. Since w = 2
is a primitive root as shown by the above overview, for
each number 1 to p−1 discrete logarithms exist and can be
looked up in the table given above. For example, the dis-
crete logarithm of 10 is 5, since 25 ≡ 10 mod 11. Please
note that only the discrete logarithms 0 to p − 2 exist,
since the number 0 cannot be expressed by an expression
wi. Therefore calculations with exponents always have to
be performed modulo p − 1, not modulo p.

If you take a look at Schumacher’s slide rule, you will
find a table of discrete logarithms (also called indices) of
the prime field for p = 101 and primitive root 2.

The scales I1 and I2 show the numbers 0, ..., p − 2
which will be used for the operations with discrete loga-
rithms.

The scales N1 and N2 are labelled with correspond-
ing values w0, ..., wp−2, all calculated modulo p. Therefore
above any number i on scales I1 or I2 the corresponding
value wi can be read on scales N2 or N1 respectively.

With this knowledge one can use the slide rule for
multiplication (or division) and exponentiation in a way
very similar to ordinary slide rules. Multiplication (or
division) can be realized by addition (or subtraction) of
the discrete logarithms (also called indices). Exponen-
tiation can be realized by multiplication of the discrete
logarithms. However, note that all calculations with the
discrete logarithms have to be done modulo p, not modulo
p − 1.

3. Decimal representations of integers
To widen the range of the slide rule usage, Schumacher of-
fers several mathematical tricks for calculation with num-
bers larger than 101. For these the properties of prime
fields are not used. Instead, specific properties of the
number 101 and the notation of numbers in the decimal
system are used.

The way we write numbers can be viewed as short-
hand notation. Remember primary school, when you
might have learned that large numbers consist of “ones”,
“tens”, “hundreds”, “thousands”, etc. For example, the
number 7489 can be written in the form

7489 = 7 thousands + 4 hundreds + 8 tens + 9 ones
The units “ones”, “tens”, “hundreds”, “thousands”,

etc. can be written as 100, 101 102, 103, etc. or, more
formally, xi with x = 10 (starting with i = 0). Using
this so-called polynomial representation, we can write the
number 7489 in the following form:

7489 = 7 ∗ 103 + 4 ∗ 102 + 8 ∗ 101 + 9 ∗ 100

= 7 ∗ x3 + 4 ∗ x2 + 8 ∗ x1 + 9 ∗ x0 with x = 10

Instead of x = 10 (decimal representation), we can
chose x′ = 100 (i.e., a “hundreds” representation). In
this case,

7489 = 74 ∗ 1001 + 89 ∗ 100

= 74 ∗ x′1 + 89 ∗ x′0 where x′ = 100

Since Schumacher choose p = 101 for his slide rule,
it can easily be used for calculating remainders modulo
101. During addition everyone can easily determine re-
mainders modulo 100 by heart. Combining these differ-
ent remainders in ingenious ways, Schumacher’s slide rule
can be used for calculating with large numbers.

For this reason Schumacher provides several rules
about how to get the coefficients of polynomials in the
hundreds representations. For most non-mathematicians
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the polynomial representation of numbers seems rather
exotic, but in the area of mathematics and computer sci-
ence it is very common. Here it should be noted that
Schumacher’s PhD thesis deals with polynomial equations
and polynomial arithmetic. [2,3] Schumacher knew that
calculating with polynomials can be interpreted as calcu-
lating with large numbers (in polynomial representation)
and vice versa. This might be the reason why Schumacher
was convinced that his rules of calculations should be sim-
ple and easy to understand.

4. Operating Instructions for the Schumacher
Slide Rule

The following explanation is based on the instruction
manual written by Dr. Schumacher himself. The fo-
cus here is on his recommendations regarding practical
application—not on number theory. It must be recog-
nized that the slide rule is suited only to calculations
involving whole numbers. Interpolation between whole
numbers is not possible.2

To multiply two numbers one uses the upper two scales
on the Schumacher (N1/N2) and proceeds in a way simi-
lar to that used in the conventional slide rule. The slide is
positioned so that number 1 on scale N2 is below the first
factor on scale N1. The second factor is found on scale
N2, and the product is read above on scale N1.

Here are two examples:

Figure 7. Example: 4 × 8 = 32

Figure 8. Example: 8 × 11 = 88

In the second example one can already see that it can
be somewhat difficult to find the second factor (i.e., 11)
on N2. In order to facilitate locating numbers on the N
scales, every Schumacher slide rule is equipped with an
“Index Table”. The numbers in the first column indicate
the “tens” rows. The numbers across the top indicate the
“ones” columns. The number in each remaining cell refers
to the position to be found on the I scales. For exam-
ple, the table indicates that the location of the number 8
(on an N scale) is to be found opposite position 3 on the
corresponding I scale.

Figure 9. Index Table.

The table also indicates that the number 11 (on the
N scale) is to be found opposite position 13 on the cor-
responding I scale.

The instructions offered so far permit calculation of
products up to 101. Such results can be read directly off
the slide rule. Since the slide rule provides only these
first 101 remainders (see Section 2 above), larger prod-
ucts must be obtained through the addition of multiples
of 101. For example, if one uses the method described
above to solve 4 × 32, one obtains the result 27. This is
obviously wrong since 4×7 = 28. So that last digit of the
product should be 8, i.e., one unit larger than 7. That
indicates that one must add one multiple of 101 to the
product, i.e., 27 + 1× 101 = 128. This difference between
27 and 28 is called the “Completion Number”.

Here is another example of this process. Consider
4 × 64. The preliminary result obtained with the Schu-
macher slide rule is 54. However, 4×4 = 16 so one can see
that the correct answer must end in 6. Thus one can men-
tally calculate that the Completion Number is 6− 4 = 2.
Therefore the correct product is 54 + 2 × 101 = 256.

If the Completion Number is less than 1, then it must
be increased by 10. For example, the preliminary calcula-
tion of 15 × 61 with the Schumacher slide rule yields the
answer 6. Since 5 × 1 = 5 and 5 − 6 = −1, the Comple-
tion Number must be −1 + 10 = 9. Therefore the correct
product is 6 + 9 × 101 = 915.

In addition to use of the Completion Number, one
should also evaluate whether the order of magnitude of
the result is plausible. For example, if the Completion
Number is 0, then the correct answer may be less than
101 or greater that 1010. Thus, when the slide rule indi-
cates that 16 × 64 = 14 (which is obviously too small),
and the Completion Number is 0, then one should add
1010, i.e., 14 + 1010 = 1024.

2It is interesting to note that the I1 and I2 scales on the production model had fine markings suggesting that interpolation between
integers was possible. There are at least three possible explanations for this elaborate design. First, the draftsman who executed the final
design may have misunderstood the limitation of the Schumacher slide rule to whole numbers. Second, it is also possible that, by using
some existing slide rule scale (e.g., an L scale), set up costs were reduced. Finally, the design may have been intentional. As Schumacher
himself noted, the scales are linear and could also be used for addition and subtraction. In that case, the ability to interpolate might
have been useful.
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Figure 10. Two-part working model based on System
Schumacher (See text for setup instructions.)

If the Completion Number is greater than 0 and the es-
timated result is greater than 1000, then one should break
the multiplication into several simple steps. For example,
according to the Schumacher slide rule, 23×49 = 16. This
is obviously wrong since 3 × 9 = 27, so the last digit in
the answer should be 7. Thus the Completion Number is
7 − 6 = 1. However, 16 + 1 × 101 = 117 is obviously too
small. Since it can be seen that the correct result will be
a large number, it is recommended that the calculation
be broken down into the following steps: 2×49×10 = 980
and 3 × 49 + 147 Therefore 23 × 49 = 980 + 147 = 1127.
The Schumacher slide rule can be used to carry out the
two steps involving multiplication, but the addition must
be carried out in one’s head or on paper.

The scales shown in Figure 10 can be used to explore
the use of the slide rule as described above. First, photo-
copy the scales on a piece of white paper. Then cut out
the two parts. Glue the two parts together so that the
“open” ends overlap and N = 50 and I = 100 on the two
pieces are correctly aligned. Finally, separate the scales
along the centerline. The upper strip will correspond the
stator, and the lower strip will correspond to the slide.

5. Assessments of System Schumacher

Schumacher’s Own Assessment
In Schumacher’s 1909 instruction book (page 1), he wrote:
“The layout of the most commonly used slide rules is
based on the theory of logarithms. One can raise the fol-
lowing questions: Are there other quantities which are
subject to analogous rules? If there are such quantities,
in what range would they permit application to the de-
velopment of a device like the slide rule? What would
be the advantages of such an application? The answer
to the first question is affirmative. In number theory the
indices play a role analogous to logarithms in arithmetic.
The second question lends itself to assessment through
the theory of indices.”

Earlier in Schumacher’s foreword, he had accordingly
conceded that he had weighed the advantages and disad-
vantages of his scales against logarithmic scales very care-
fully. His design “would prove to be useful for instruction
in elementary and middle schools and as an introduction
into the realm of advanced algebra and number theory in
higher education.” However, he recognized that his slide
rule would not replace the logarithmic slide rule.

The Assessment of a Contemporary
In a 1909 critique, Heinrich Wieleitner wrote,3 “With re-
gards to the practical applicability of this slide rule, the
inventor himself is of the opinion that it will not displace
the logarithmic slide rule in the hands of engineers and
technicians. The main obstacle certainly lies in the fact
that the reversed calculations are not practicable, except
when they leave no remainder. Even in the case of multi-
plication of two- and three-digit numbers one must carry
out in one’s head a remarkable series of operations and

3Heinrich Wieleitner (1874 - 1931) was a teacher and mathematics historian. He authored numerous publications on the history and
the teaching of mathematics.
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deliberations. This is because the slide rule only yields
the remainder resulting from division by 101. One can
obtain the final result much faster in other ways.” [4]

An evaluation from today’s point of view
You may ask whether the mathematical operations de-
scribed above in Section 3 can be used in daily life. To
give an answer to this question one should not take into
account only the requirements from common engineering
disciplines. Dr. Schumacher was not an engineer but a
mathematician. In 1884 he finished his PhD disserta-
tion, Zur Theorie der biquadratischen Gleichungen (“On
the theory of biquadratic equations”), at the University
of Erlangen, Germany. This dissertation deals with bi-
quadratic equations with special attention to the theory
of calculating with such equations. In this class of equa-
tions only integer coefficients are considered. Approxi-
mated results do not make sense in this class of problems.

For this kind of problem common slide rules are not
adequate. Because of imprecise reading of values one can-
not determine whether obtained results are exact inte-
gers or possibly include a small fraction besides an in-
teger. Therefore Schumacher’s slide rule was intended
for users (i.e., mathematicians dealing with mathemati-
cal problems on integers) different from users of common
slide rules. So, it was not Schumacher’s intention to re-
place common slide rules. This was explicitly mentioned
by both Schumacher and Wieleitner.

The mathematical operations described in the previ-
ous sections seem to be very theoretic and not practica-
ble. From today’s point of view this is not true. Nowa-
days, calculations in prime fields are basic lessons in the
study of mathematics and computer science. Correspond-
ing concepts are even introduced in some special courses
in secondary school (the German Abitur).

These theoretical concepts are the basis for many
everyday applications. Examples of such applications are
data transfer (e.g., by satellite and telephone), digital
storage (especially for error detection and correction on
CD and DVD), and great parts of cryptography. Even
the security of cryptographic algorithms is based on the
difficulty of computing discrete logarithms in very large
prime fields (i.e., for prime numbers several hundred dig-
its long). The basics of the corresponding theories had
been developed by mathematicians like Galois and Ja-
cobi. The latter was explicitly mentioned in Schumacher’s
book. For mathematicians working in this theoretical
area, Schumacher’s slide rule might be a helpful tool.
However, from a practical point of view, we should men-
tion that Schumacher’s slide rule might not be usable even
for the above-mentioned practicable applications, because
of the restriction on one specific and small prime num-
ber p = 101. Nevertheless, for educational purposes the
slide rule might be suitable for showing number theoreti-
cal concepts, like the ones given above.

One main disadvantage of Schumacher’s slide rule is
its restriction to a specific prime field. Additionally, its
usage is restricted by the choice of the primitive root

w = 2, which cannot be changed. If one wants to use
a different primitive root, e.g., w′ = 3 the labelling of
the slide rules must be modified. The resulting table of
discrete logarithms would look different, too. The scales
N1 and N2 would need complete modification, such that
the values w′i = 3i modulo 101 for i = 0, ..., p − 2 would
be written from left to right.

These disadvantages might explain why Schumacher’s
slide rule was not a success story. In our opinion, even
at Faber-Castell nobody expected to sell a large number
of this type of slide rule. From the manufacturing point
of view the labelling should not have been very challeng-
ing, because any calculation result is of an integer type.
Therefore no special accuracy requirements were needed
for the labelling.

6. Conclusion

It must be acknowledged that Schumacher achieved his
bold goal of designing a slide rule that was not based
on logarithms. However, even from the beginning it was
clear that the Schumacher slide rule was a curiosity—a
kind of “anti-slide rule”—if one judged it in terms of ease
of application, understandability, speed of calculations,
and usefulness in practice (e.g., in engineering).

Model 366 appeared for the last time in the 1929 cata-
log, and this slide rule probably attracted very few buyers
during its 20-year life span. Because the slide rule is so
unusual and so few were sold, it is now a rare and a much
sought-after collector’s item. The authors know of only
five surviving specimens: three in the hands of private
collectors, one in the Faber-Castell archives, and one in
the Technisches Museum in Vienna.
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