Search this site

Calculating History

Welcome

An early IT disaster **Chemical Slide** Rules **Christmas Tree Formulas Complex Number** Slide Rules **Computing Linkages** Correlation machines Doomsday Egg Slide Rule **Electrical Slide** Rules Infinite scales Irish Logarithms Keyboard Lack of Space Otis King Patents Patents heatmap Terminology Sitemap

Recent site activity

Correlation machines

attachment from Andries de Man edited by Andries de Man

Infinite scales edited by Andries de Man

Correlation machines edited by Andries de Man

View All

Welcome > Irish Logarithms > Irish Logarithms Part 2 >

Jacobi indices

This page is an appendix to "Irish Logarithms Part 2"

The Jacobi index Ind(z) of an integer z can be given by

$$z = g^{\ln d(z)} \mod p \tag{1}$$

The trick is to find values of *g* and *p* for which this equation applies and for which Ind(z) is unique for each value of *z* in a selected set of numbers. If *p* is prime and the set of *z*'s consists of all integers between 1 and *p* – 1, then there is a *g* for which each *z* has an unique index between 0 and *p* – 2. If so, <u>then</u>:

$$\ln d(z_1 \times z_2) = \ln d(z_1) + \ln d(z_2)$$
 (2)

So using Ind(), we can multiply by adding.^[1]

For a calculator like <u>Verea's</u>, we only need the indices of the 36 integers in the simple multiplication table.

So for a calculator the set of *z*'s differs from the set of all integer between 1 and p - 1: there are "gaps" in the collection and the collection does not end with a prime (p - 1 = 81).

Because in the calculator only numbers less than 10 are multiplied, equation (2) does not have to apply for all z_1 and z_2 , but only for z_1 , $z_2 < 10$. The resulting index $Ind(z_1 \times z_2)$ must be unique for all unique simple products.

So we do not have to apply the Jacobi indices literally for the multiplication table of a calculating machine. We can still try using equation (<u>1</u>) to generate indices that meet our goal. There is no guarantee that the indices that we find are the **smallest** numbers causing $Ind(z_1 \times z_2) = Ind(z_1) + Ind(z_2)$. Our final goal is to minimize the largest index.

Using equation (<u>1</u>) with p = 11 and g = 2, I found two sets of indices with the largest index less than 100. The following table shows the indices for the integers <10:

Ind(z)	0	1	18	2	44	19	7	4	36
Ind(z)	0	1	8	2	44	9	27	4	16

Other choices of *p* and *g* may provide better (i.e. lower) indices.

The indices of <u>Schumacher's slide rule</u> are generated with p = 101 and g = 2.

Notes

1. Strictly speaking: the sum of the indices modulo p - 1.

Comments

You do not have permission to add comments.

Sign in | Recent Site Activity | Report Abuse | Print Page | Powered By Google Sites