Calculating History

Welcome

An early IT disaster
Chemical Slide
Rules
Christmas Tree
Formulas
Complex Number
Slide Rules
Computing Linkages
Correlation machines

Doomsday
Egg Slide Rule
Electrical Slide
Rules
Infinite scales
Irish Logarithms
Keyboard
Lack of Space
Otis King
Patents
Patents heatmap
Terminology
Sitemap

Recent site activity
Correlation machines
attachment from Andries de Man
edited by Andries de Man
Infinite scales
edited by Andries de Man
Correlation machines edited by Andries de Man

View All

Welcome $>$ Irish Logarithms $>$ Irish Logarithms Part $2>$

Jacobi indices

This page is an appendix to "Irish Logarithms Part 2"

The Jacobi index $\operatorname{Ind}(z)$ of an integer z can be given by

$$
\begin{equation*}
z=g^{\ln (z)} \text { modulo } p \tag{1}
\end{equation*}
$$

The trick is to find values of g and p for which this equation applies and for which $\operatorname{Ind}(z)$ is unique for each value of z in a selected set of numbers. If p is prime and the set of z 's consists of all integers between 1 and $p-1$, then there is a g for which each z has an unique index between 0 and $p-2$. If so, then:

$$
\begin{equation*}
\operatorname{Ind}\left(z_{1} \times z_{2}\right)=\operatorname{Ind}\left(z_{1}\right)+\operatorname{Ind}\left(z_{2}\right) \tag{2}
\end{equation*}
$$

So using Ind(), we can multiply by adding. ${ }^{[1]}$
For a calculator like Verea's, we only need the indices of the 36 integers in the simple multiplication table.

So for a calculator the set of z's differs from the set of all integer between 1 and $p-1$: there are "gaps" in the collection and the collection does not end with a prime ($p-1=81$).

Because in the calculator only numbers less than 10 are multiplied, equation (2) does not have to apply for all z_{1} and z_{2}, but only for z_{1}, $z_{2}<10$. The resulting index $\operatorname{Ind}\left(z_{1} \times z_{2}\right)$ must be unique for all unique simple products.

So we do not have to apply the Jacobi indices literally for the multiplication table of a calculating machine. We can still try using equation (1) to generate indices that meet our goal. There is no guarantee that the indices that we find are the smallest numbers causing $\operatorname{Ind}\left(z_{1} \times z_{2}\right)=\operatorname{Ind}\left(z_{1}\right)+\operatorname{Ind}\left(z_{2}\right)$. Our final goal is to minimize the largest index.

Using equation (1) with $p=11$ and $g=2$, I found two sets of indices with the largest index less than 100. The following table shows the indices for the integers <10:

z	1	2	3	4	5	6	7	8	9

$\operatorname{Ind}(z)$	0	1	18	2	44	19	7	4	36
$\operatorname{lnd}(z)$	0	1	8	2	44	9	27	4	16

Other choices of p and g may provide better (i.e. lower) indices.

The indices of Schumacher's slide rule are generated with $p=101$ and $g=2$.

Notes

1. Strictly speaking: the sum of the indices modulo $p-1$.

Comments

You do not have permission to add comments.

