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Abstract

The first part of the XX century saw the development of the digital
computer and the field of computer science. In the present paper, we
sketch our vision of that period and of the role that Alan Turing and
some of his contemporary peers played in that development.

1 Introduction

This year there have been more than 100 celebrations honoring the birth
of Turing, the size of which contrasts a bit with the celebrations devoted
to other pioneers of the computability field, as Kurt Gödel or John von
Neumann, whose anniversaries were remembered with specialized meetings
in a few universities, which did not reach by far the popularity of the present
year celebrations.

In today’s academic world, it is normal that scientists publish mainly
joint papers and tend to concentrate their research effort in a few, very fo-
cused, interconnected topics. This social trend of research is a rather new
one. Alan M. Turing (1912-1954) was an English mathematician, which in
spite of his short life, made contributions in many different fields of math-
ematics, biology and computer science. For instance, as an undergraduate
at Cambridge he re-discovered the central limit theorem, and the proof was
sufficiently novel that Cambridge university awarded him a fellowship for
Princeton [84]. While at Bletchley Park during the WWII, he applied again
probability to decrypt the German ciphers produced by the Enigma ma-
chine1. For an historical and technical explanation of Turing’s efforts in
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breaking the Enigma’s code see Chapter 4 in [58] or [39]. After his 1936
breakthrough result on a virtual model of computer, the universal Turing
machine (UTM), which will be one of the central topics in the present ar-
ticle, Turing approached an array of problems in mathematics and biology
from the perspective of their computability. He contributed to numerical
analysis, in particular matrix decomposition manipulation [75] (see [15] for
a survey); the Riemann hypothesis [78] (see [7] for a survey); philosophy [76]
(this paper has originated a vast literature within the philosophy commu-
nity); biology, his celebrated paper on morphogenesis [77] (see [57, 35] for
the long-term impact of this paper).

In the present work we focus exclusively on the contribution of Turing to
computation and his influence on the development of the digital computer
machine. Our main thesis is that Turing’s work was a very important link
in the chain of people and developments that ended with the birth of the
universal computer and the concept of decidability, but it seems plausible
that, without him, the digital computer would have developed basically
the same, despite Turing’s thought that digital computers were a practical
version of his universal machine (see pp. 1190 in [33]). On the other hand,
he was the first person to formalize an algorithmic viewpoint on different
types of mathematical and biological structures and, without doubt, he can
be considered the father of theoretical computer science.

For the reader interested in the life and achievements of Alan Turing, we
recommend the excellent biography by Andrew Hodges [32].

2 Algorithms and calculating machines

From very old times, humanity had the need to find step-by-step procedures
to solve problems associated with agriculture, navigation, astronomy, etc.
For instance, computing the area of a triangle, computing the radius of
the earth, or computing the square root of an integer (see for example [37,
45])2. These procedures are what today we call algorithms. An algorithm
is a set of step-by-step rules to solve a problem, such that, given an input,
the algorithm produces a correct output in finite time. A detailed cooking
recipe is an algorithm, where the quality of the output is quantitatively
difficult to evaluate. The word algorithm derives from the word algorism,
the middle ages latin manner to refer to the rules of performing arithmetic as
explained in the textbook “Kitab al-Jam’a wal-Tafreeq bil Hisab al-Hindi”,

2One of the most interesting source of references for the history of algorithmics are
Knuth’s books.
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the arithmetic book written by mathematician Abu Ja’far Muhammed ibn
Mûsâ Al-Khwârizmı̂ [85, 38].

In parallel there was a progressive emphasis on building analog mech-
anisms to carry out computations. In an analogue machine numbers are
represented by physical magnitudes. In general, a mathematical process is
transformed within these machines into a sequence of movements of gears
(or other mechanical system) to obtain the solution.

Examples of known antique analog mechanisms are the astrolabe, the
abacus, the slide rule, the nomograph, the pascaline calculator, the Leibniz
wheel, etc. A particularly relevant example of old sophisticated analog en-
gine is the Antikyhera mechanism (approx. 150 BC), to which some people
refer as the first computer. It was recovered from the bottom of the sea in
1900, and until the 21c. it was not clear what it could do; now it is known
that it could compute the position and phases of the moon and the sun. It
was probably used for sailors to know the tides in the costs and to predict
other astronomical phenomena. Its precision is comparable to the one of a
19c. Swiss clock (see [62] and Chapter 3 in [11]).

Until the 20c. scientists used the progressively more sophisticated calcu-
lating mechanisms only as a helping tool to implement particular arithmetic
steps of algorithms, with the exception of a few visionary minds like Leibniz
and Babbage.

3 The dream of a universal method of reasoning

Gottfried W. Leibniz (1646-1716) is known to be an important mathemati-
cian, philosopher, jurist, and inventor (among other things he designed a
calculator, the Leibniz wheel, that could multiply directly by using cogwheels
of different radii). However, from the computational point of view, what is
interesting is Leibniz’s dream of finding an automatic reasoning machine
relying on an alphabet of unambiguous symbols3 manipulated by mechan-
ical rules, which could formalize any consistent linguistic or mathematical
system. In the words of Davis (pp. 13 in [18]): “Leibniz saw his program as
consisting of three major components. First, before the appropriate symbols
could be selected, it would be necessary to create an encyclopedia encom-
passing the full extent of human knowledge. Once having accomplished this,
it should be feasible to select the key underlying notions and to provide ap-
propriate symbols for each of them. Finally, the rules of deduction could be

3He picked up the symbols
∫

and d for the integral and differential calculus.
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reduced to manipulations of these symbols, that is what Leibniz called the
calculus ratiocinator, which nowadays might be called symbolic logic”.

Hence Leibniz believed that human thought and reasoning could be au-
tomated. In fact, he thought that his symbolic calculus could be used to
settle legal disputes: a few men of good will sitting around a table would
say “let us calculate” and decide who was right using paper and pencil or,
even better, a machine [18, 24]. It is known that Leibniz knew the Ars
Magna by Ramon Llull (1232-1315), where he proposed a combination of
religious and philosophical arguments taken from previously compiled lists,
such that a reader with a question could find an appropriate answer. Llull
even designed a kind of machine to implement this, the Lullian Circles.
Each circle dealt with a particular topic of faith and consisted of two discs
inscribed with alphabetical letters or symbols that referred to lists of con-
cepts, where rotating the circles would generate different combinations of
arguments. The underlying principle was that there were a limited number
of basic, undeniable truths in the catholic faith, and that one could answer
any doubt related to that faith by choosing the appropriate combinations of
these elemental truths [56, 6].

Besides symbolic calculus, Leibniz also had some ideas that 200 years
later played an important role in the development of the digital computer.
Although binary numbers were known since the 5th century BC, Leibniz
saw binary coding as the key to his universal language. In fact, Leibniz
proposed shift registers as the way to perform arithmetic operations with
binary digits. He also imagined a calculating machine in which binary digits
were represented by spherical tokens governed by mechanical control (see
Chapter 6 in [24]).

Leibniz did attempt to produce a calculus ratiocinator, and he created an
algebra to specify the rules for manipulating logical concepts, with specific
symbols. George Boole (1815-1864) and Augustus De Morgan (1806-1871)
converted the loose ideas of Leibniz into a formal system, the Boolean alge-
bra. Finally, Gottlob Frege (1848-1925) in his famous Begriffsschrift4 pro-
vided the fully developed system of axiomatic predicate logic. Later, Frege
went on to prove that all the laws of arithmetic could be logically deduced
from a set of axioms within his Begriffsschrift. Frege’s main innovation was
the introduction of variables. He wrote a two-volume book on the formal
development of the foundations of arithmetic. When the second volume
was already in print, Frege got the celebrated letter from Bertrand Russell

4For an English translation, see: Concept Script, a formal language of pure thought
modeled upon that of arithmetic, in [29] pp. 1879–1931.
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(1872-1970) showing his theory was inconsistent. The counterexample was
the paradox of extraordinary sets. A set is defined to be extraordinary if it is
a member of itself, otherwise it is called ordinary. Is the set of all ordinary
sets also ordinary? (There are plenty of references for the historical account
of the letter and its effects, but see pp. 169 to 171 in [23] for a particularly
charming account of the effect of Russell’s letter on Frege.)

Frege’s work was the spark for 30 years of research to build solid foun-
dations for mathematics. A particularly important piece of work in this re-
search was the book Principia Mathematica by Whitehead and Russell [81].
As we will see, the effort ended in 1931 with a negative answer by Gödel.
Meanwhile, the end of the 19c. and the beginning of the 20c. witnessed
strong mathematical, philosophical and personal battles between the intu-
itionist and formalist European schools of logic. Among the many historical
accounts of that period, two gentle overviews are [18, 23].

3.1 Human computers

Since the introduction of differential calculus in the 17c., human calculators
were hired to perform mechanical computations. For instance, Carl Friedrich
Gauss (1777-1855) hired Johann Zacharias Dase, who had an incredible
mental capacity to handle large numbers, but could not understand the most
basic concepts of mathematics [34]. During the 19c. and the first half of
the 20c., the word computer meant a human implementing a mathematical
procedure, possibly with the help of a calculator or slide rules. Human
computers were used in the construction of all kinds of tables: artillery
firing tables, nautical and astronomical tables. They played an important
role in the Manhattan project to build the atomic bomb. As Grier describes
in his book [26], the Mathematical Tables Project employed 450 human
computers, mostly people with low incomes, who from 1938 to 1948 produced
tables of powers, trigonometric functions, and other mathematical functions
to put together the first complete Handbook of Mathematical Functions.
Each group of workers was assigned a specific task, addition, subtraction,
multiplication, or division calculations, making the functioning of a group
“similar” to the basic scheme of the future digital computer. The idea of
human computers was so deeply embedded into the minds of those who
designed the first digital computers, that at the beginning, they denoted the
machines computors to distinguish them from human computers [24].
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3.2 The difference engine and the analytic engine

Charles Babbage (1791–1871) was an English mathematician, cryptographer
and inventor. Looking at an astronomic table with the English astronomer
John Herschel (1792-1871) they discovered the tables were wrong, which led
Babbage to design a machine to compute correctly astronomic data. As he
mentioned in [4], the use of human computers in table construction made
inevitable the introduction of errors, which were difficult to detect and fix,
the only way out being to completely mechanize the process so as to avoid
human intervention. Towards this goal, he designed the Difference Engine
following previous ideas of Johan H. von Müller (1746-1830), a German army
engineer who conceived a machine based on Newton’s method of divided
differences [40], but who never started to build the machine.

Astronomic tables rely heavily on the evaluation of trigonometric func-
tions. The basic idea of the machine is to approximate the value of logarith-
mic and trigonometric functions by evaluating the polynomial arising in the
Taylor’s expansion of these functions. For instance, cos(x) = 1−x2

2! +x4

4! −· · · .
Therefore, the computation boils down to computing polynomials at a given
value x, where the degree of the polynomial depends on the desired accuracy.

Babbage’s design to evaluate polynomials up to degree n consisted of
n+ 1 columns. The first column contained the values of x, the second, the
corresponding value f(x), the third, the values ∆1(x) = f(x + 1) − f(x),
the third column contained ∆2(x) + ∆1(x + 1) − ∆2(x) until the n + 1
column contained ∆n(x + 1) − ∆n(x). The initial values were computed
and introduced by hand into the machine until knowing the value of the
constant value of ∆n+1(x) at column (n + 1), from there on, turning a
crank, the machine computed f(n+ 1), f(n+ 2), . . ., and output the results
in a typewriter. Note that for any polynomial, of degree n, ∆n+1(x) =
∆n+1(x + 1) = ∆n+1(x + 2) = · · · . So we only need to introduce by hand,
the first n values of x and the computations until arriving to ∆n+1(0), from
then we can back-track from column (n + 1) to column 1 getting the the
values from f(11), f(12), . . .. this only needs sums and subtractions and
thus it can be done using the cogwheels of the difference engine.

Babbage built parts of the machine but never completed the whole con-
struction. He later designed an improved version, Difference Engine No. 2,
which never went past the blueprint stage, until in 1991 the British museum
built an exemplar of it [65, 66]. A Swedish lawyer, Pehr Scheutz (1785–1873),
built several improved versions of the difference engine, based on the ideas
of Babbage [40].

While working on the difference engine, Babbage realized he could do a

6



more general machine. He started to design the analytic engine, a mechani-
cal machine with columns of discs, each disc representing a digit between 0
and 9, and each column representing a real number. The important distinc-
tion between the difference and the analytic engines is that, while the former
was a single purpose calculator, the analytic engine was an universal ana-
logic mechanism, which was controlled by an external program introduced
via punched cards. Moreover, input data was introduced via a different
type of punched cards. Thus, the idea of the analytic engine was to have an
arithmetical unit, which was an improved kind of differential engine able to
perform basic arithmetic operations but having also internal procedures to
carry out program instructions (it played a role similar to the CPU in the
digital computers), and an input/output mechanism by means of punched
cards. The whole process was controlled by a program that introduced for
the first time the conditional branching feature, with control operators like
if then, goto, for, etc.

We just aim to give a glimpse of Babbage’s contribution. More precise
details can be found in [80], where there are plenty of information about
the analytical engine, including videos and the original 1842 report of F.
Menabrea with the annotations of Ada Augusta Byron, the countess of
Lovelace (1815-1852). An English translation of the original can be retrieved
from the site devoted to the analytic engine at the Bibliothèque Universelle
de Genève [44]. The notes from Ada Byron include what is considered to be
the first computer program, a procedure to compute the Bernouilli numbers
(see note G in [44]). The analytic engine was never constructed, Babbage
tried to built some components of it, as the arithmetical unit, but the En-
glish government cut the funding and the project was discontinued.

There has been a discussion about the impact of Babbage’s ideas on the
development of the universal digital computer, with some historians arguing
that the analytic engine had no real impact on the development of the digital
computer [82, 8]. From today’s perspective, after many efforts devoted to
the study of the analytic engine, it seems clear that Babbage had the ideas
underlying the modern universal computer, which is not to say the people
involved in the development of computability knew about Babbage’s work.
On the contrary, evidence seems to indicate that the analytic engine had a
minimum influence on the development of the digital computer.

3.3 Babbage’s influence

Since in 1836 Gaspar Coriolis designed a mechanical calculator to solve first-
order differential equations [14], an increasing number of analogic differential
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analyzers to solve differential equations of higher degree by integration were
proposed. The motivation for that surge of machines was the need for fire-
control tables in artillery. However, these machines were considered as single
purpose advanced calculators and did not have too much relation with Bab-
bage’s universal analytical engine. Here we comment on three examples that
used some of Babbage’s ideas.

• Percy Ludgate (1893-1922) was an Irish accountant that in his spare
time designed an analytic engine with remarkable differences with Bab-
bage’s one. He did not use gears, but sliding rods and shuttlers, he
relied on binary numbers, and probably his greatest contribution was
to use a system of multiplication using logarithms, not in a very differ-
ent way than the slide rule. His design is not easy to follow and never
was implemented. For more details see [53], and for a bit cryptic
description of his design see [41].

• Leonardo Torres Quevedo (1852-1936) was a Spanish civil engineer
that besides constructing a number of cableways (some still in use),
dirigibles, and automatic chess players, he also designed several analog
calculating machines. He was aware of Babbage’s work and in [68] he
proposed to build an electromechanical calculator with floating-point
arithmetic and using a logarithmic scale. The calculator was controlled
by a read-only program with conditional branching (as Ada Lovelace
had already proposed for the analytical engine). In 1920 one of his
calculators, the arithmometer, was demonstrated to the public; people
would input an arithmetic problem and the calculator would print the
solution (see [53, 67]).

• Horward Aiken (1900-1973) was an US engineer who designed the Har-
vard Mark I, also know as the Automatic Sequence Controlled Calcu-
lator. He explicitly stated that his Mark I machine was the electronic
realization of the analytic engine, but it seems Aiken had very limited
understanding of how the analytic engine worked [12]. Two differ-
ences with the Babbage design are that it was electromechanical and
it did not have the conditional branching feature, a big difference with
the analytic engine, which would make it difficult to implement some
of Ada Lovelace’s programs on the Mark I, so the machine was not
universal (or Turing-complete, as universal machines were denoted for
reasons we will see below). Mark I was operational in 1944, and the
project was financed by IBM.
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4 The unifying theory of computation

David Hilbert (1862–1943) was one of the great mathematical minds in the
20c. Under his leadership, the Mathematical Institute at Göttingen became
the leading mathematical place in the world, until the 1930’s when the
Nazi policies displaced the mathematical center of gravity from Göttingen
Institute to the Institute for Advanced Studies at Princeton. For a nice
biography of Hilbert’s life see [54].

Since the 1890’s, Hilbert had become one of the leading figures in the
formalist school trying to solve the foundational crisis of mathematics pro-
duced by Russell’s letter to Frege. In 1928 Hilbert wrote a textbook with
his student Ackerman [31], where he posed the completeness of arithmetic
as an open question.

Let us recall some basic definitions. A formal system is a language, a
finite set of axioms, together with a set of inference rules used to derive
expressions (or statements) from the set of axioms. An example is mathe-
matics with the first-order logic developed by Frege. A formal system is said
to be complete if every statement can be proved or disproved. Otherwise the
system is said to be incomplete. A formal system is said to be consistent if
there is not a step-by-step proof within the system that yields a false state-
ment. A system is said to be decidable if, there exists a finite procedure (i.e.,
an algorithm) for every statement, to determine whether the statement is
true.

At the Paris International Congress of Mathematicians in 1900, Hilbert
presented a list of 10 relevant problems to be solved in the 20c. The list was
extended to 22 problems in a posterior English written version of the ICM
presentation [30]. The 10th problem was: “Given a diophantine equation
with any number of unknown variables, devise a process to determine in a
finite number of operations whether the equation is solvable”. Recall that
a diophantine equation is a polynomial equation that allows only integer
solutions. For example, find if there are integer solutions to 4xyz = 3(yz +
xz + xy).

At the Bologna International Congress of Mathematicians in 1928, Hilbert
presented three problems to his fellow mathematicians. The second one
would have a big impact in the development of computing science, the
Entscheidungsproblem:5 “Provide a method such that, given a first-order
logic statement, would determine in a finite number of well-defined steps
whether or not the statement is valid”. In other words, the Entschei-

5The translation in English is the decision problem.
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dungsproblem asks for the existence of a finite procedure (an algorithm)
that could determine if a mathematical statement is true or false. Hilbert
was convinced that the answer would be yes, as mathematics should be
complete, consistent and decidable.

There were some negative reactions to Hilbert’s Entscheidungsproblem;
for instance, according to Hodges’ book, the English mathematician Godfrey
Hardy (1877-1947) that was present at the 1928 ICM made the following
comment: “There is of course no such a theorem, and this is very fortunate,
since if there were we should have a mechanical set of rules for the solution
of all mathematical problems, and our activities as mathematicians would
come to an end” (pp. 93 in [32]).

4.1 The incompleteness theorem

Hilbert was born in Königsberg and in 1930 the city honored him with
the title of honorable citizen. As part of the festivities, a workshop on
the foundations of mathematics was organized. As Davis (pg. 89 in [18])
recounts: “At the round-table discussion that concluded the event, a shy
young man named Kurt Gödel made a quiet announcement that, to those
who grasped its importance, signaled a new era. One of the presents, was
von Neumann6 who got the point at once, and concluded that the jig was
up”.

The announcement was that arithmetic was incomplete, i.e., there were
statements that could not be either proved or disproved. K. Gödel (1906-
1978) was a mathematician with an interesting biography [20]. His cele-
brated result of 1931 stated that, in any formal system sufficiently powerful
to include ordinary arithmetic, there will be undecidable statements, i.e.,
that can’t be proved to be true or false [27, 43]. The proof is technically
involved, but the idea is simple. It goes back to the same argument in Rus-
sell’s letter to Frege. Gödel proved that any arithmetic any formula could
be encoded as an integer, so proofs and in fact the whole arithmetics can be
encoded as integers. As we are encoding the integers and the arithmetics, it
is possible to write arithmetic self-referring statements (something equiva-
lent to Russell’s extraordinary sets), which is a sort of paradox that cannot
be proved true or false using the rules of arithmetic. For the details of the
proof see, for example, the appendix to Ch. 6 in [18] or the nice description

6John von Neumann (1903-1057) was an extraordinary mathematician that made rele-
vant contributions in different fields: logic, topology, economics, operation research, quan-
tum mechanics, probability, weather prediction and computer science. He also had a
number of important official positions in the US (see for example [42]).
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in [48].
Gödel’s incompleteness theorem had a devastating effect on Hilbert, see

pg. 287 in [23]. However, some other mathematicians were motivated by the
Entscheidungsproblem, such Max Newman (1897-1984), a topologist that
attended Hilbert’s lecture in Bologna. In 1935 he taught a course at Cam-
bridge University on the foundations of mathematics, where he finished by
explaining Gödel’s incompleteness theorem and pointing to the students that
the Entscheidungsproblem was still open, in the sense that an undecidable
statement had still to be found. One of the undergraduates attending the
course was Alan Turing. The following year he wrote a paper showing such
a statement.

4.2 Solution to the Entscheidungsproblem

In 1936 Turing had ready the draft of his paper “On Computable Numbers,
with an Application to the Entscheidungsproblem” [69]. The contribution of
the paper is the proposal of a formal model of computation, the a-machine,
today known as the Turing machine7, and it was proved that any function
that could be effectively computed (in the sense of Hilbert) by a human
computer could also be mechanically calculated in a finite number of steps
by a mechanical procedure, namely the Turing machine. The paper goes
on using this formalism to define the set of computable numbers, those reals
for which their ith decimal can be computed in a finite number of steps.
The number of computable numbers is countable but the number of reals
is uncountable, so most of the reals are not computable. Some well-known
computable numbers are 1/7, π, e, . . ..

In his model, Turing introduced two essential assumptions: the dis-
cretization of time and the discretization of the state of mind of a human
computer. He was able to simulate complicate behavior of the mind in a
human computer by a limited number of states. As Turing writes in [69]:
“The idea behind digital computers may be explained by saying that these
machines are indeed intended to carry out any operations which can be done
by a human computer. The human computer is supposed to be following
fixed rules, he has no authority to deviate from them in any detail. We may
suppose that those rules are supplied in a book, which is altered whenever
he is put on to a new job. He has also an unlimited supply of paper on which
he does his calculations. He may also do his multiplications and additions
on a desk machine, but this is not important.”

7In 1937 Church wrote a review of Turing’s paper in the Journal of Symbolic Logic and
coined the term Turing machine.
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Figure 1: Snapshots of the example of TM computation in the text. (a)
Initial position, (b), (c) and (d) scanning the input until the end of 1’s, (e)
adding a new 1 to the end, (f) final position after going back to 0’s at the
left.

A decade later, this analysis of a virtual machine based on mental rule
operations gave rise to the field of Artificial Intelligence.

A Turing machine (TU) consists of a infinite tape divided in squares,
a finite input on a finite alphabet and a write-read head that can be in a
finite number of states, representing Turing’s discretization of the human
computer’s brain. At each step, the head reads the symbol in the square
under it and, depending on the symbol and the current state and using
a “stored-in program”, erases, writes, moves one square right or left and
changes (or not) state.

The following example presents a TM to solve the following problem:
“Given n ∈ N in unary (as a row of consecutive (n+ 1) 1’s), with 0’s to the
left and right of the block of 1’s, write integer n+ 1 and return to the initial
position”. The machine has an alphabet {0, 1} and three states {q0, q1, q2}.
At the beginning the head is in state q0 scanning the leftmost 1, the “stored-
in program” is the following list of actions: (1) when in state q0 and scanning
a 1 move right, (2) when in state q0 and scanning a 0, change the 0 to 1,
change to state q1 and move left, (3) when in state q1 and scanning a 1 move
left, (4) when in state q1 and scanning a 0, change state to q2, move right
and halt. At the end, there would be (n+2) 1’s, with the head at the initial
position. Figure 1 shows a sequence of pictures of the head and the tape
during the execution of the “stored-in program”.

Notice that a single TM is finite, so we can encode it as an integer,
therefore the number of TM’s is infinite but enumerable. As Turing knew
well the proof of Gödel’s incompleteness theorem, it was natural for him to
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encode his machines as integers.
An outstanding achievement of Turing was the concept of universal Tur-

ing machine (UTM). For example, the chapter devoted to Turing in [18] has
the very illustrative title “Turing Conceives the All-Purpose Computer”.
Given as input the codified description simulate TM M (the instruction
table) and the input to M, the UTM is able to perform the computation
of that machine and write the result. So the UTM can simulate any other
TM.

The idea of universality from Leibniz and Babbage was finally realized
in the Universal Turing Machine. Today’s computers, from big supercom-
puters to laptops, are just variations of the universal machine concept.

Another contribution of Turing to computability was to give an example
of undecidable problem, the halting problem. In today’s terminology: “Given
a program and an input to it, decide whether the computation will halt on
the given input”. Turing stated the halting problem in terms of TM’s and
language recognition. For a nice informal description of the proof that the
halting problem is undecidable, see Chapter 7 in [18].

At the time Turing was writing his paper, he was not aware that other
mathematicians were working on the same topic. Alonzo Church (1903
–1995) had been for some time trying to formalize the notion of effective
computation as well as to provide an example of undecidable problem. To-
gether with his student S. Kleene, he was developing λ-calculus, a formalism
to characterize the class of efficiently computable functions. In 1936 he
published his formal system [10], where he also proved that the problem of
deciding a normal form in the λ-calculus was undecidable, therefore pro-
viding an example of undecidability of the Entscheidungsproblem. When
Turing was finishing his paper, the issue of the Journal of Symbolic Logic
with Church’s paper arrived at Cambridge, and Turing hastily added an
appendix to his draft, sketching the equivalence between the concepts of
decidability using TM’s and λ-calculus. In 1937, Turing would produce a
full paper on the equivalence between the two models [70]. He went to the
Institute for Advanced Study at Princeton to do a PhD under Church.

It is interesting to notice that Gödel did not believe that λ-calculus
provided the full characterization for decidability and, as reported in [60],
when Gödel knew Turing’s model he wrote: “That this is really the correct
definition of mechanical computability was established beyond any doubt
by Turing”. For enlightening accounts of the historical debate about the
two formalisms see [61, 60]. Today, and the equivalence between λ-calculus
and the Turing machine as characterizations of decidability is known as the
Church-Turing thesis. However, the fact that Turing characterizes human

13



computability in machine terms has an enormous appeal. This doesn’t deny
the tremendous importance that Church’s λ-calculus had for the develop-
ment of functional programming languages, like Haskell, Scheme and others.

Turing’s PhD thesis extended Gödel’s incompleteness theorem by prov-
ing that adding new axioms to an incomplete formal system, the system
remains incomplete [71]. An important contribution of that paper was the
oracle TM model. In the words of Turing: “Let us suppose we are supplied
with some unspecified means of solving number-theoretical problems, a kind
of oracle as it were. We shall not go any further into the nature of this oracle
apart from saying that it cannot be a machine”. An example would help to
understand the concept of oracle Turing machine. Consider the Goldbach’s
conjecture problem: “Decide whether it is true that every even integer greater
than 2 can be written as the sum of two primes.” It is easy to verify the
conjecture for small integers, 8 = 3 + 5 or 1714 = 1361 + 353. In fact, the
conjecture has been empirically verified up to values of n = 4 × 1018 [?].
However, since in 1742 Christian Goldbach exposed the problem to Euler,
a general solution has remained open. The problem has been a favorite one
for many mathematicians and there is a nice novelized presentation of the
problem by A. Doxiadis [22].

Assume that we have an oracle H that could decide the halting problem,
then we can design a TM that, from i = 3 to ∞, at each step increases i by
1 and tests whether 2 ∗ i is the sum of two primes, and if it is not, halts.
Then one could ask the oracle if the machine would halt, if the answer were
yes then the solution to the Goldbach’s conjecture would be false.

Turing’s oracle machine can be used to compare the relative difficulty of
problems. Given problems P1 and P2, P1 is Turing-reducible8 to P2 (P1 ≤T

P2) if P2 can be used to construct in a finite number of steps a program to
solve P1 (for a technical definition of T-reducibility, see for example [55, 5]).
Note that if P1 ≤T P2 and P2 is decidable then P1 is also decidable, and if
P1 ≤T P2 and P1 is undecidable then P2 is also undecidable. Therefore, T-
reducibility can be used to enlarge the class of know undecidable problems.

The oracle TM was a key tool to compare degrees of indecidability among
problems and led first Post and after Kleene and Mostowski [52, 36] to define
the arithmetic hierarchy, where problems are classified according to their
degree of unsolvability and each class is characterized by an alternation of
existential and universal unbounded quantifiers [55].

8The name Turing-reducibility is due to Post.
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4.3 Post’s contribution

Emil Post (1897-1954) was an extraordinary bright mathematician with a
severe maniac-depressive mental disease, which affected his life. After en-
rolling as a graduate student at Columbia University (1918), he attended a
seminar on what then was a recently published three-volume work on the
foundations of mathematics, namely Principia Mathematica by Whitehead
and Russell. The seminar had a strong influence on Post, who started his
PhD in logics, which he completed in 1921. It is widely accepted that his
thesis contained essentially the incompleteness theorem of Gödel, a similar
model to the Turing machine, as well as a formulation of what later would
be defined as recursive function theory (see [63, 64, 21], the introduction in
[16], and problem 7.34 in [46]). According to Hartmanis, “Post was trying to
accomplish single handedly, in one blow, what was accomplished by Gödel,
Church, Kleene and Turing” [28].

It is worth to remark that Post work did not solve the Entscheidungsprob-
lem nor did he define the universality of his model or its equivalence with the
existing models of effective computability. In 1941 Post, who was well aware
of the work of Gödel, Chuch and Turing, submitted his work done from the
20’s on to the American Journal of Mathematics, where the manuscript was
rejected for the basic reason that (quoted from [17]): “. . . twenty years ago
your work did not find its due recognition. However, we cannot turn the
clock back; in the meantime Gödel, Church and others have done what they
have done, and this journal is no place for historical accounts . . .”. In 1943
a short journal version appeared in [49], and in 1994 the full version was
published in a compilation of his work, edited by Martin Davis, who had
been his PhD student [17].

In 1946 Post published the undecidability of what today is known as the
Post Correspondence Problem [51]. He extended Turing’s oracle machine
to define reductions among problems [50]. First Post, and after his death
Kleene, used T-reducibility for defining the arithmetical hierarchy of classes
of equivalent undecidable problems, where each problem in a level of the
hierarchy is ”a degree more undecidable” than the problems in the previous
level.

5 Turing and the digital computer

The purpose of the present work is not a presentation of the early digital
computer race, for which there is plenty of literature. For instance, nice
sources of information, focused mainly on the computer race in the US,

15



are [24, 59]. Among other things, these books explain the importance of
military in the development of the first digital computers, and how much of
this work was kept under secrecy until two decades later.

Our goal in this section is to sketch the role that Turing may have played
in the birth of the digital computer. In the standard terminology, a digital
computer is said to be Turing-complete if it is able to simulate a UTM,
i.e., if it is universal. For instance, todays laptops are Turing-complete
and the internet can be loosely considered as a network of Turing-complete
computers.

As we already mentioned, in the first part of the 20c. there were several
sophisticated single-purpose analytical calculators, but an important con-
tribution came in 1941 with the construction of the Atanasoff-Berry digital
computer (ABC). John Atanasoff (1903-1995) was a professor of physics
that designed the ABC to simplify his mathematical calculations. The ABC
used the binary number system with an electronic central processor consist-
ing of electronic tubes to perform basic arithmetic operations. It was not
programmable and therefore not Turing-complete.

One of the first program-controlled, Turing-complete digital computers
was the Z3 that Conrad Zuse (1910-1995) built in 1941, with little funding
from the German government. The Z3 had several features as floating-point
arithmetic and the use of a binary system, as Leibniz had put forward four
centuries before. The input to the Z3 was introduced through a punched
tape. Zuse anticipated, but never implemented, the storage of machine
instructions into machine memory. It seems Zuse’s ideas were unknown in
the US and UK until after WWII, but probably he was aware of Turing’s
work.

Another early computer in Europe was the Colossus (1943), a digital
computer designed at Bletchtley Park to crack one type of German cryp-
tography by a team headed by Max Newman (the old Turing’s professor).
The Colossus was programmable by punched tape and switches, but it was
not Turing-complete, since it was configured to make a series of Boolean
operations on its input data. Although Turing was at Bletchley Park at the
time, he had little direct involvement in the development of the machine,
but his idea of TM may have been a source of inspiration for its design, since
Newman knew very well Turing’s papers [13]. Due to military secrecy, the
Colossus existence was a secret of state until the 1970’s9, although it seems
plausible that due to the military cooperation between US and UK, some

9In fact, it was dismantled. The current Colossus at Bletchley Park museum is an
unfinished reconstruction based on the original blueprints.
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high-rank people involved in the war effort at the US could have known the
existence of the computer, in particular John von Neumann.

The first Turing-complete digital computer in the US was ENIAC. At
the beginning it was aimed to speed up the construction of firing tables,
but it was programable through switches and cables, i.e., the program was
introduced mechanically by hand into the machine. Its construction started
in 1943 under John Mauchly and Presper Eckert, and it was operational in
1946. Another characteristic is that it used the decimal system. In 1973 a
federal US judge invalidated the previous patent recognizing that ENIAC
was the first digital computer, on the basis that some of the features in
ENIAC were present in ABC and that in 1941 Atanasoff had given Eckert a
demonstration of ABC’s workings [24]. It is also known that von Neumann
visited ENIAC in August 1944, at the same time that Mauchly, Eckert and
their team were already discussing a new machine.

In June 1945 von Neumann wrote his famous “The First Draft of a Re-
port on the EDVAC” [79], where he described the logical design of a com-
puter using the stored-program concept, which has been known since then
as von Neumann’s architecture, and which still is the principle of today’s
computer architecture. In the report, von Neumann did not cite Turing or
anybody else. However, it seems plausible that the whole concept of stored-
program machine could have been inspired by the Turing machine, which
he not only knew very well, but also recommended to engineers working on
the development of digital computers. Recall that in the universal Turing
machine, the programs controlling it are represented as data, and manipu-
lated by the machine in the same way as the input, which is the basis of the
stored-program machine. Moreover, many of the ideas in the report seem
to come from the discussions between Mauchly, Eckert and other engineers
during the brainstorming meetings to devise a successor for ENIAC [25].

After the war, in 1945, when Turing moved from Bletchley Park to the
National Physical Laboratory (NPL), his bosses asked him to write a doc-
ument on the feasibility of building a digital all-purpose computer. The
following year he presented to the executive committee of NPL his detailed
report: “Proposal for Development in the Mathematics Division of an Auto-
matic Computing Engine” [74], also know as the ACE-report, a very detailed
explanation of how to construct an electronic stored-program computer. It
introduced several new features, for instance the Abbreviated Computer In-
structions, a formal programming language for the ACE. One of the bright
ideas of Turing to speed up computation when storing machine instructions
was the use of direct access to memory registers. Turing also proposed that
ACE should have separate registers for performing the basic operations: ad-

17



dition, multiplication, logical operations, etc. These ideas would have made
ACM the fastest computer of its time. In the report, the possibility of pro-
gramming and using the machine from distance via telephone’s lines was also
suggested. Despite NPL being an English governmental institution devoted
basically to military applications, the members of the executive committee
were not aware of the existence of Colossus, and for security reasons Turing
could not say that Colossus existed, so the project was downgraded to build-
ing a toy ACM machine [13, 9]. Finally, the full machine was completed in
1958, when computer architecture had improved quite a bit and the ACM
was already obsolete. For a vivid recount of the events, see [83].

Therefore, it seems clear that the TM influenced von Neumann’s report
and it is known that von Neumann’s report influenced Turing’s ACE report.
But the importance of Mauchly, Eckert and other engineers that contributed
to the development of the early computers should not be downplayed.

Although mathematicians had an important role in the computer’s race,
for some time most of them (but not all, and in particular, not Turing or
von Neumann) tended to consider digital computers as mere tools to crunch
data. For instance, according to Hodges’ book, at the beginning of the 1950’s
a grad student at University of Manchester, after reading some of Turing’s
and Church’s papers, asked Max Newman for advise on how to do a PhD
using digital computers, and Newman’s answer was that “there is nothing
to do with computers that merits a PhD” (pg. xv in [32]).

Another important programming contribution by Turing came out while
he was at Manchester university as head of the computer laboratory, where
he wrote what is considered to be the first document on verification of com-
puter programs. The document, together with annotations, was reprinted
in [47].

6 Hypercomputation

Hypercomputation deals with the design of computer models that go beyond
the decidability paradigm. There are different kinds of models: the ones that
defy physical laws usually the computer is left on earth, while the operator
makes a trip in a rocket at a speed close to the one of light, so the time is
altered. For a rebuttal of these models see [2, 3].

A second approach relies on machines with special properties, like Zenon
machines, fuzzy machines and neural networks that can deal with real non-
computable numbers (not just the computable ones defined by Turing).
Most of these constitute nice theoretical models of computation, but as
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regards to somehow “solve” undecidable problems in the near future, Davis
said it beautifully in [19]: “The evidence provided by hypercomputation
amounts to the trivial remark that given an oracle that makes uncomputable
information available, it would become possible to compute uncomputable
functions.”

7 Conclusions

Alan Turing was a singular scientist that left a deep imprint in the history
of computing and whose premature death probably deprived us of other
important contributions. His work is undoubtedly an important link in the
chain of research leading to the development of the digital computer. In
2012, the year of the centenary of his birth [1], he has been chosen as a
banner to honor also the many other scientists who contributed in various
degrees to that chain: from Leibniz, with his dream of a universal method
of reasoning, to Babbage and Lovelace, Hilbert and Gödel, and especially
Turing’s contemporary, namely von Neumann, Newman, Eckert, Mauchly,
Kleene, Church and Post, as well as many other researchers without whom
the world today would not be as digital as it is. In this paper we have tried
to acknowledge the contributions of these top researchers, by articulating
them in a historical account of the birth and early evolution of the computer
science field.

References

[1] 2012 the Alan Turing year. http://www.mathcomp.leeds.ac.uk/turing2012/.

[2] S. Aaronson. NP-complete problems and physical reality. Technical
Report arXiv:quant-ph/0502072v2, 2005.

[3] S. Aaronson and J. Watrous. Closed timelike curves make quantum
and classical computing equivalent. Technical Report arXiv:quant-
ph/0808.2669, 2009.

[4] C. Babbage. Passages from the Life of a Philosopher. Cambridge Li-
brary Collection, 2011.

[5] J. L. Balcazar, J. Dı́az, and J. Gabarró. Structural Complexity I.
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