Non-Supervised Robust Visual Recognition of Color Images Using Half-Quadratic Theory

Rozenn DAHYOT (1), Pierre CHARBONNIER (1), Fabrice HEITZ (2).
Rozenn.Dahyot@equipement.gouv.fr, Pierre.Charbonnier@equipement.gouv.fr, fabrice.heitz@ensps.u-strasbg.fr

Purpose: Robust visual learning-based pattern recognition
- Learning of appearance by PCA
- Recognition steps:
 • robust reconstruction \(a^* \) on \(F \),
 • identification to the closest model

Contributions
- M-estimation using Half Quadratic Theory
- Joint pattern reconstruction and parameter estimation
- Extension to color images

Robust recognition
Residual at pixel \(i \) for gray level images:
\[e_i = c_i - c_i^* = c_i - \sum_{j=1}^{i-1} c_j + U_i \]

• Least Squares estimation (LS):
 \[\arg \min_c \left\{ J_2(c) = \sum_{i=1}^{n} \rho_0(e_i) \right\} \]

• M-estimation:
 \[\arg \min_c \left\{ J_2(c) = \sum_{i=1}^{n} \rho(c_i) \right\} \]

Half Quadratic Theory
Augmented energy
\[\min J_1(c, b) = \min_c \min_b \left\{ J_1^*(c, b) = \sum_{i=1}^{n} \left(\rho(c_i) + b \rho'(c_i) \right) \right\} \]

Algorithm: Iterative Reweighted Least Squares
- repeat
 \[\begin{align*}
 b_i^{(m+1)} &= \rho'(c_i^{(m)})/2c_i^{(m)} \\
 (U^T \cdot B^{(m+1)} \cdot U)c_i^{(m+1)} &= U^T \cdot B^{(m+1)} \cdot e
 \end{align*} \]
- until convergence

Scale parameter estimation
- Energy to minimize for convex functions (Huber):
 \[\arg \min \sum_{i=1}^{n} \rho(c_i) a \frac{c_i}{\sigma} \]

Using (non convex) hard redescenders

Extension to color images
Residual at pixel \(i \):
\[e_i = (e_i^R - q_i^R, e_i^G - q_i^G, e_i^B - q_i^B) \]

Application to road signs recognition

Robust recognition:
- M-estimation
- HS, HL, GM
- Outlier masks
- LS estimation

Color discrimination:
- M-estimation
- HS, HL, GM
- Outlier masks